No	Symbol	Description	Source	Value	Units
51	Dotl	diameter passing through the outer tubes	$ \begin{array}{c} D_s - L_{bb} \\ \langle 1 \rangle - \langle 21 \rangle \end{array} $		m
52	D_{ctl}	Diameter passing through center of tubes	$D_{otl} - d_o$ (51) - (2)		m
53	N _{tt}	Number of tubes	Input data table item # 15 or see note on Item #53 & Fig R1		
54	Sm	Cross flow area at shell center line	See notes on item $\#$ 54 & Eq. (2)		m ²
55	G_s	Maximum shell side mass velocity	$\dot{m}_{\rm s}/S_{\rm m}$		$kg/(m^2.s)$
56	Res	Shell side Reynolds number	$G_s d_o / \mu_s$		-
57	ΔT_1	Temperature difference,	see note on item #57 & Fig. R2		° C
58	ΔT_2	Temperature difference	see note on item #58 & Fig. R2		° C
59	$\Delta T_{LM,CF}$	Log mean temperature difference for counter flow arrangement	$\frac{\Delta T_1 - \Delta T_2}{1 - (\Delta T_1 - \Delta T_2)}$		° C
60	E	Temperature correction factor	$\frac{ln(\Delta I_1/\Delta I_2)}{1}$		
00 61		Mean temperature difference	See notes on item #00		- ° C
62	ΔT_{LM}	Heat transfer area based on shell	$\frac{\Delta I_{LM,CFF}}{\pi d L N}$		<u> </u>
02	A_0	side	nu _o L _{ta} N _{tt}		m
63	θ_{ds}	Angle intersecting the inside shell wall with baffle edge	$2\cos^{-1}[1 - 2B_c/100] = 2\cos^{-1}[1 - 2\langle 11 \rangle/100]$ See note on Items 63-67		deg.
64	θ_{ctl}	Angle intersecting the centers of the outmost tubes with baffle edge	$2 \cos^{-1} \{ (D_s/D_{ctl}) [1 - 2 B_c/100] \}$ See note on Items 63-67		deg.
65	θ_{otl}	Angle intersecting the outer surface of the outmost tubes with baffle edge,	$2\cos^{-1}\{(D_s/D_{otl})[1-2(B_c/100)]\}$ See note on Items 63-67		deg.
66	S_{wg}	Gross window flow area, See note on item 63-67	$(\pi/4)(D_s^2)[(\theta_{ds}/360) - \sin(\theta_{ds})/2\pi]$		m^2
67	F_w	Fraction of number of tubes in one window	$(\theta_{ctl}/360) - \sin{(\theta_{ctl})}/2\pi$		-
68	F_c	Fraction of tubes in pure cross flow	$1 - 2F_{w}$		-
69	S_{wt}	Area occupied by tubes in the window	$N_{tt}F_w(\pi/4) d_o^2$		m^2
70	S_w	Cross flow area through one baffle windows	$S_{wg} - S_{wt}$		m^2
71	L_{pp}	Layout geometry length, See note on item # 72	See input data sheet & notes on item 72		т
72	N _{tcc}	Number of effective rows crossed in one cross flow section between baffle tips	$(D_s/L_{pp})[1-2(B_c/100)]$		-
73	N _{tcw}	Effective number of rows crossed in baffle window	$(0.8/L_{pp}) [D_S(B_c/100) - (D_s - D_{ctl})/2]$		-
74	N_b	Number of baffles	$(L_{ti}/L_{bc}-1)$		-
75	L_{pl}	A dimension to express the effect the tube lane partition	0 or $L_p/2$ See the input data sheet		m
76	S_b	Shell to bundle by pass area	$L_{bc}[(D_s - D_{otl}) + N_{tp} * L_{pl}]$		m^2
77	F_{spb}	Ratio of Sb to Sm	S_b/S_m		
78	L _{sb}	Clearance between shell and baffle (Dimeteral)	Data or $L_{sb} = 3.1 + 0.004 D_s$ in mm		m
79	S_{sb}	Shell to baffle leakage area	$\pi D_s (L_{sb}/2) [(360 - \theta_{ds})/360]$		m^2
80	Stb	Tube to baffle leakage area	$(\pi/4)[(d_o + L_{tb})^2 - d_o^2]N_{tt}(1 - F_w)$		m^2
81	J_c	Segmental baffle window correction factor	$0.55 + 0.72F_c$		-

Calculation sheet for rating shell and tube heat exchangers

No	Symbol	Description	Source	Value	Units
82	r_{lm}	Parameter for finding the leakage correction factor	$(S_{sb} + S_{tb})/S_m$		-
83	r_s	Parameter for finding the leakage correction factor	$S_{sb}/(S_{sb}+S_{tb})$		-
84	J_l	Heat transfer correction factor due to leakage, see Note on item 85	See Eq. (10) & Fig. R3		-
85	R_l	Pressure drop correction factor due to leakage, see notes on item # 86	See Eq. (11) & Fig. R4		-
86	r _{ss}	Sealing strips factor	N_{ss}/N_{tcc}		-
87	J_b	Heat transfer correction factor due to shell to bundle by pass	Eq. (12) & Fig. R5 See Notes on item 87		-
88	R_b	Pressure drop correction factor due to shell to bundle by pass	Eq. (13) & Fig. R6 See notes on item 88		-
89	N_c	Total number of tube rows crossed	$(N_{tcc} + N_{tcw}) * (N_h - 1)$		-
90	J_r	Heat transfer correction factor due adverse temperature gradient in laminar flow	See Eq. (14-16) and Fig. R7		-
91	L_i^*	Dimensionless inlet baffle spacing	Lui/Luc		_
92	L^*_{*}	Dimensionless outlet baffle spacing	<u> </u>		-
93	L_0	Heat transfer correction factor due to	Eq. (17) & Fig. R8		-
,,,	55	unequal inlet and outlet baffle spacing	See notes on item 93		
94	R _s	Pressure drop correction factor due to unequal inlet and outlet baffle spacing	See notes on item 94		-
95	$\phi_{\rm s}^r$	Shell side viscosity effect correction factor	See notes on item 95		
96	j _i	Ideal tube bank heat transfer j factor	Eq. (23-24) & Fig. (R9) & table R1		-
97	fi	Ideal tube bank f pressure friction factor	Eq. (25-26) & Fig. (R9) & table R1		-
98	<i>h</i> _i	Ideal heat transfer coefficient	$j_i C_{ps} G_s P_r^{-2/3} \phi_s^r$		$W/(m^2.K)$
99	J_{tot}	Total heat transfer correction factor	JcJiJbJrJs		
100	h_s	Shell side heat transfer coefficient	$h_i j_{tot}$		$W/(m^2.K)$
101	Δp_{bi}	Ideal pressure drop for tube bank in one baffle compartment	$4f_i N_{tcc} (G_s^2/2\rho_s)\phi_s^{-r}$		Pa
102	Δp_c	Pressure drop in cross flow between baffle tips	$\Delta p_{bi} * (N_b - 1) R_b R_l$		Pa
103	D_w	Window hydraulic diameter	$\frac{4S_w}{\pi d_o N_{tw} + \pi D_c \theta_{ds}/360}$		т
104	G_w	Window mass flow velocity	$\dot{m}_{a}/\sqrt{(S_{m}-S_{m})}$		$kg/(m^2.s)$
105	Δp_w	Pressure drop in baffle window, see note	Eq. (27-30), & Fig. R10		Pa
106	Δp_e	Pressure drop in the two end zones, See note on item #106	$2\Delta p_{bi}(1+N_{tcw}/N_{tcc})R_bR_s$		Pa
107	Δp_s	Shell side pressure drop. See notes on item # 107	$\Delta p_c + \Delta p_w + \Delta p_e$		Pa
108	h _t	Tube side heat transfer coefficient	Input sheet estimated or calculated		$W/(m^2.K)$
109	A_o/A_i	Ratio of shell side to tube side heat transfer areas	d_o/d_i (no fins)		-
110	$R_w A_o$	Wall thermal resistance	$\frac{d_o \ln \left(d_o / d_i \right)}{2k_{co}}$		m^2K/W
111	1/U _o	Overall thermal resistance for the heat exchanger	$\frac{1}{h_s} + R_{fo} + R_w A_o + R_{fi} \frac{A_o}{A_i} + \frac{A_o/A_i}{h_t}$		m^2K/W
	U _o	Shell side overall heat transfer coefficient			$W/(m^2.K)$
112		Actual heat transfer rate	$A_{\alpha}U_{\alpha}\Delta T_{IM}$		W
113		Required heat transfer rate	Given or $\dot{m}_s C_{ns} (T_{si} - T_{so}) $		W
	~req	-			

Item # 53

$$N_{tt} = (N_{tt})_1 = \frac{0.78 D_{ctl}^2}{C_1 L_{tp}^2}$$
(1a)

C₁=0.866 for θ_{tp} =30° or 1 for θ_{tp} = 45° or 90°

Correction if some tubes have to be omitted

$$N_{tt} = (N_{tt})_1 (1 - \psi_c)$$
(1b)

$$\theta_{ctl} = 2\cos^{-1}\left[\frac{D_s}{D_{ctl}}\left(1 - \frac{2B_c^*}{100}\right)\right]$$
(1c)

 L^*_{bch} is the cut height due tube omission, and related to B^*_c as follows

$$B_c^* = 100 \frac{L_{bch}^*}{D_s} \tag{1d}$$

Which is similar to baffle cut

$$\psi_c = \frac{\theta_{ctl}}{360} - \frac{\sin\left(\theta_{ctl}\right)}{2\pi} \tag{1e}$$

If tube field on both sides of the shell is cut, then use $2\psi_c$.

• Correction for multiple tube passes (i.e. $N_{tp}>1$) $N_{tt} = (N_{tt})_1(1 - \psi_n)$

 ψ_c can be found from the following figure

Item # 54

$$S_m = L_{bc} \left[L_{bb} + \frac{D_{ctl}}{L_{tp,eff}} (L_{tp} - d_o) \right]$$
⁽²⁾

Where $L_{bb} = D_{s} \cdot D_{otl}$ $L_{tp,eff} = L_{tp}$ for $\theta_{tp} = 30^{\circ}$ or 90° layout $L_{tp,eff} = 0.707 L_{tp}$ for 45° staggered layout

Item # 57 & 58

Item # 60

F=1 for pure parallel, counter flow HX, and for phase change heat exchangers. F should be around 0.75 to 0.8 or above

Item # 63 though 67

$$\cos\left(\theta_{ds}/2\right) = \frac{(1/2)D_{S}(1-2B_{c}/100)}{D_{S}/2}$$
(3a)

$$\theta_{ds} = 2\cos^{-1}(1 - 2B_c/100) \tag{3b}$$

Similarly one can find expression for θ_{ctl} and θ_{otl} .

$$x = D_s/2\cos(\theta/2) \tag{4a}$$

$$y = D_s/2\sin(\theta/2) \tag{4b}$$

Triangle area

$$2\left[\frac{1}{2}x\ y\right] = 2\left[\frac{1}{2}\frac{D_S}{2}\cos\left(\frac{\theta}{2}\right) * \frac{D_S}{2}\sin\left(\frac{\theta}{2}\right)\right] = \frac{D_S^2}{4}\cos\left(\frac{\theta}{2}\right) * \sin\left(\frac{\theta}{2}\right) = \frac{D_S^2}{4}\frac{1}{2}\sin\left(\theta\right)$$
(5)

Using

$$\sin(2\alpha) = \sin(\alpha)\cos(\alpha) \tag{6}$$

Segment area

$$S_{wq} = Sector \, area - Triangle \, area \tag{7}$$

$$S_{wg} = \pi \frac{D_s^2}{4} \frac{\theta}{360} - \frac{D_s^2}{4} \frac{1}{2} \sin(\theta) = \pi \frac{D_s^2}{4} \left(\frac{\theta_{ds}}{360} - \frac{\sin(\theta_{ds})}{2\pi} \right)$$
(8)

The fraction of tubes in the baffle window is the ratio of the segmented area divide by the cross-section area of the shell i.e.

$$F_w = \frac{\theta_{ctl}}{360} - \frac{\sin\left(\theta_{ctl}\right)}{2\pi}$$

Item # 71

L_{pp} Layout geometry length:

$$L_{pp}=0.866L_{tp} \text{ for } \theta_{tp}=30^{\circ}$$
$$L_{pp}=L_{tp} \text{ for } \theta_{tp}=90^{\circ}$$
$$L_{pp}=0.707L_{tp} \text{ for } \theta_{tp}=45^{\circ}$$
5

Item # 75

 $L_{pl} = 0$ or $L_p/2$. L_p can be assumed to be equal to d_o

Item # 76

Shell to bundle by pass area

According to Shah, Fundamentals of Heat Exchanger Design, Wiley, 2003.

$$S_{b} = L_{bc} \Big[(D_{s} - D_{otl}) + N_{tp} * L_{pl} \Big]$$
(9)

Where N_{tp} is the number of tube passes.

Item #84

J1: Baffle leakage heat transfer coefficient correction factor

$$J_l = 0.44(1 - r_s) + [(1 - 0.44(1 - r_s)] * \exp(-2.2r_{lm})$$
(10)

Item #85

R1: Baffle leakage pressure drop correction factor

$$R_l = exp[(-1.33)(1+r_s)r_{lm}^p]$$
(11a)

$$p = [-0.15(1 + r_s) + 0.8]$$
(11b)

Item # 87 J_b: Heat transfer correction factor due to bundle bypass

$$J_b = exp\left[-C_{bh}F_{sbp}\left(1 - \sqrt[3]{2r_{ss}}\right)\right]$$
(12)

With the limits

 $J_b=1$ for $r_{ss} \ge \frac{1}{2}$ and

 $C_{bh}{=}1.35$ for $Re_s{\,\leq\,}100$ and

 C_{bh} =1.25 for Re_s>100

$$r_{ss} = N_{ss}/N_{tcc}$$

$$F_{sbp} = S_b / S_m$$

Item # 88

R_b: pressure drop correction factor due to bundle by pass

$$R_{b} = exp[-C_{bp}F_{sbp}(1 - \sqrt[3]{2r_{ss}})]$$
(13)

With the limit

 $R_b=1$ at $r_{ss} \ge \frac{1}{2}$

And

 C_{bp} =4.5 if $R_s \le 100$ and

 $C_{bp} = 3.7 \text{ if } R_s > 100$

Item # 90

J_r: heat transfer correction factor for adverse temperature gradient in laminar flow

For $\text{Re}_s \leq 20$

$$J_r = (J_r)_r = \left(\frac{10}{N_c}\right)^{0.18}$$
(14)

Where N_c is the total number of tube rows crossed i.e.

$$N_c = (N_{tcc} + N_{tcw})(N_b + 1)$$
(15)

For $20 < Re_s < 100$

$$J_r = (J_r)_r + \left(\frac{20 - Re_s}{80}\right) \left((J_r)_r - 1\right)$$
(16)

With the limits

$$J_r = 1 \text{ for } Re_s > 100$$

= $(J_r)_r \text{ for } Re_s < 100 ; J_r \ge 0.4$

 J_r

$$J_{s} = \frac{(N_{b}-1) + (L_{i}^{*})^{1-n} + (L_{o}^{*})^{1-n}}{(N_{b}-1) + L_{i}^{*} + L_{o}^{*}}$$
(17)

Where

n= 0.6 for turbulent flow

n=1/3 for laminar flow

$$L_{i}^{*} = L_{bi}/L_{bc}$$

$$L_{o}^{*} = L_{bo}/L_{bc}$$

$$Fig. R8 J_{s} correction factor$$

Item # 94

Rs: shell side pressure drop correction factor for unequal inlet/outlet baffle spacing

$$R_s = \left(\frac{L_{bc}}{L_{bo}}\right)^{2-n} + \left(\frac{L_{bc}}{L_{bi}}\right)^{2-n} \tag{18}$$

Where

n=1 for laminar flow

n=0.2 for turbulent flow

with the following limits

- For $L_{bc}=L_{bi}=L_{bi}$ R_s=2
- For $L_{bo}=L_{bi}=2L_{bc}$ R_s=1 for laminar flow, and R_s=0.57 for turbulent flow.
- For typical U tube HX $L_{bi}=L_{bc}$ and $L_{bo}=2L_{bc}$; $R_s=1.5$ for laminar flow, and $R_s=1.3$ for turbulent flow.

Item # 95

 ϕ_s^r is a correction factor that accounts for viscosity variation between the average (bulk) and wall value.

1-For liquids

$$\phi_s^r = \left(\frac{\mu_s}{\mu_{sw}}\right)^{0.14} \tag{19}$$

2-For gas being cooled

$$\phi_s^r = 1.0 \tag{20}$$

3-For gas being heated

$$\phi_s^r = \left(\frac{T_{savg} + 273}{T_w + 273}\right)^{0.25} \tag{21}$$

A first estimate for the wall temperature T_w can be assumed as the average temperature of the fluids in the shell and in the tubes. If an estimate for the shell side and tube heat transfer coefficient are known then

$$T_w = T_{t,avg} + \frac{T_{s,avg} - T_{t,avg}}{1 + h_t / h_s}$$
(22)

Item #96 &97 Ideal heat transfer and friction coefficients

$$j_i = a_1 \left(\frac{1.33}{L_{tp}/d_o}\right)^a (R_{es})^{a_2}$$
(23)

$$a = \frac{a_3}{1 + 0.14 \, R_{es}^{a_4}} \tag{24}$$

$$f_i = b_1 \left(\frac{1.33}{L_{tp}/d_o}\right)^b R_{es}^{b_2}$$
(24)

$$b = \frac{b_3}{1 + 0.14 \, R_{es}^{b_4}} \tag{26}$$

T. and and	р	-				1.	1.	1.	1.
Layout	Kes	a_1	a_2	a_3	a_4	<i>D</i> ₁	<i>D</i> ₂	<i>D</i> ₃	<i>D</i> ₄
Angle									
30°	$10^5 - 10^4$	0.321	-0.388	1.450	0.519	0.372	-0.123	7.000	0.500
	$10^4 - 10^3$	0.321	-0.388			0.486	-0.152		
	$10^3 - 10^2$	0.593	-0.477			4.570	-0.476		
	$10^2 - 10$	1.360	-0.657			45.100	-0.973		
	<10	1.40	-0.667			48.000	-1.000		
45°	$10^5 - 10^4$	0.370	-0.396	1.930	0.500	0.303	-0.126	6.59	0.520
	$10^4 - 10^3$	0.370	-0.396			0.333	-0.136		
	$10^3 - 10^2$	0.730	-0.500			3.500	-0.476		
	$10^2 - 10$	1.300	-0.656			26.200	-0.913		
	<10	1.550	-0.667			32.000	-1.000		
90°	$10^5 - 10^4$	0.370	-0.395	1.187	0.370	0.391	-0.148	6.30	0.378
	$10^4 - 10^3$	0.107	-0.266			0.0815	0.022		
	$10^3 - 10^2$	0.408	-0.460			6.0900	-0.602		
	$10^2 - 10$	0.900	-0.631			32.100	-0.963		
	<10	0.970	-0.667			35.000	-1.000		

Table R1 Constants for f_i and j_i expressions for deal flow over bank of tubes

Item # 105 Pressure drop

For $R_{es} \geq 100$

$$\Delta P_{w} = N_{b} \left[(2 + 0.6 N_{tcw}) \frac{(\dot{G}_{w})^{2}}{2\rho_{s}} \right] R_{l}$$
(27)

$$\dot{G}_{W} = \frac{\dot{m}_{s}}{\sqrt{S_{m}S_{W}}} \tag{28}$$

For $R_{es} < 100$

$$\Delta P_{w} = N_{b} \left\{ \frac{26 \, \dot{c}_{w} \, \mu_{s}}{\rho_{s}} \left[\left(\frac{N_{tcw}}{L_{tp} - d_{o}} \right) + \frac{L_{bc}}{D_{w}^{2}} + \left[\frac{\dot{G}_{w}^{2}}{2\rho_{s}} \right] \right] \right\} R_{l} \tag{29}$$

$$D_{w} = \frac{4S_{w}}{\pi d_{o} N_{tw} + \pi D_{s}(\theta_{ds}/360)}$$
(30)

$$N_{tw} = N_{tt} F_w \tag{31}$$

Item # 106

$$\Delta P_e = 2 \,\Delta P_{bi} (1 + N_{tcw}/N_{tcc}) R_b R_s \tag{32}$$

Number 2 in the right hand side of the above equation is according to Shah, Fundamentals of Heat Exchanger Design, 2003, John Wiley.

Item # 107

$$\Delta P_s = \Delta P_c + \Delta P_w + \Delta P_e \tag{33}$$

