King Abdul-Aziz University

Mechanical Engineering Department

ME451 Refrigeration and Air Conditioning

Theoretical Simple Vapor Compression Refrigeration Cycle

Contents

- Carnot Refrigerator Cycle
- Theoretical (simple) vapor compression Refrigeration Cycle
- Example on vapor compression refrigeration cycle
- Theoretical piston displacement
- Use of P-h diagram

Carnot Refrigerator

$$C.O.P. = \frac{Q_L}{W} = \frac{q_L}{W}$$

$$(C.O.P)_{R,rev} = \frac{Q_L}{Q_H - Q_L} = \frac{T_L}{T_H - T_L} = \frac{1}{T_H / T_L - 1}$$

$$W$$

$$REF.$$

$$Q_L$$

$$T_L$$

T-s diagram for the Carnot Cycle

Theoretical (Simple) Vapor Compression Cycle

Ideal Vapor Compression Refrigeration Cycle

- •1 \rightarrow 2 Isentropic compression (s₁=s₂)
- 2 \rightarrow 3 Isobaric heat rejection (P=P_C)
- 3 \rightarrow 4 Irreversible (throttling) process (h₃=h₄)
- 4 \rightarrow 1 Isobaric heat addition (P=PE)

T-s Diagram for theoretical V.C.R. Cycle

P-h diagram for Theoretical V.C.R. Cycle

COP for the theoretical cycle

Energy Balance for each component

$$COP = \frac{\dot{Q}_e}{\dot{W}} = \frac{q_e}{w}$$

Energy balance for the evaporator

$$\dot{Q}_E = \dot{m}(h_1 - h_4)$$

or

$$q_E = (h_1 - h_4)$$

The same thing can be done for other components such as the compressor, the condenser, and the expansion valve

$$(C.O.P)_{R} = \frac{\dot{Q}_{e}}{\dot{W}} = \frac{\dot{m}(h_{1} - h_{4})}{\dot{m}(h_{2} - h_{1})} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

Refrigeration efficiency

$$\eta_R = \frac{(C.O.P)_R}{(C.O.P.)_{R,rev}}$$

R in the subscript to indicate refrigerator not a heat pump

EER=Energy Efficiency Ratio

$$EER = \frac{\dot{Q}_e[W]}{\dot{W}[W]} \cdot \frac{\frac{3.413Btu / hr}{W}}{W} = 3.413COP$$

EER units: Btu/h for each Watt power

Comparison between Carnot and theoretical refrigeration cycle

Summary of properties for Ideal vapor Compression Cycle

State	Т	Ρ	h	S	V
1					Sat. V
2					
3					Sat. L
4					

Example of Ideal VCR

Given: P_E, P_C, Refrigerant type

State	Т	Ρ	h	S	V
1		P _E	h _g	s ₁ =s _g	
2		P _C		S ₂ = S ₁	
3		P _C	h _f		
4		P _E	h ₄ =h ₃		

Example 2.1

Consider a R-134a theoretical vapor compression machines. The condenser pressure is 1.8 MPa. Saturated refrigerant at 5 °C leaves the evaporator. Draw the cycle on P-h and T-s diagrams, and find

h

[kJ/kg]

401.3

435.2

292.5

292.5

S

[kJ/kg.

K]

1.7239

1.7239

a-the refrigeration effect qe

b-the compressor specific work w

c-C.O.P. , (C.O.P)_{\text{R,rev}} and η_{R}

d-Mass flow rate of refrigerant if the capacity is 10 tons

e-Repeat the calculations if Te is lowered to -25 °C.

Case when T_E =-25 C

State	T [°C]	P [kPa]	h [kJ/kg]	s [kJ/kg. K]
1	-25	107.2	382.95	1.7441
2	73.64	1800	442.16	1.7441
3		1800	292.50	
4		107.2	292.50	

$$COP_{R} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}} = 1.53$$
 $(C.O.P)_{R,rev} = \frac{-25 + 273}{62.9 - (-25)} = 2.82$

 $\eta_R = \frac{(C.O.P)_R}{(C.O.P.)_{R,rev}} = 0.54 \qquad \dot{m} = \frac{\dot{Q}_e}{q_e} = \frac{35.160}{90.45} = 0.389 \text{ kg/s}$

Effect of changing T_E and T_C on the performance of the vapor compression cycle

We know for the ideal Carnot refrigeration cycle (using either the T-s diagram or the following relation

$$(C.O.P)_{R,rev} = \frac{Q_L}{Q_H} - Q_L = \frac{T_L}{T_H} - T_L = \frac{1}{T_H/T_L} - \frac{1}{T_H}$$

As T_E is lowered while T_C is fixed, the COP_R decreases

This is true also for the theoretical vapor compression cycle as will be shown in the next slide

$$w = h_2 - h_1 + h_z - h_z = (h_2 - h_z) - (h_1 - h_z)$$

Which is given by the indicated area

It is clear then that as T_L is lowered, q_e decreases, and w increases which means that the COP decreases

Using P-h chart

Chart C-2SI

Piston Displacement

mass of the refrigerant in the cycle

$$\dot{m} = \rho \dot{V} = \frac{\dot{V}}{v} = \frac{PD_{th}}{v}$$
$$PD_{th} = v\dot{m} [m^3 / s]$$

For a reciprocating compressor with bore D, stroke L

$$PD_{th} = \frac{\pi D^2}{4} L n_p \frac{N}{60}$$

