King Abdul-Aziz University

Mechanical Engineering Department

ME451 Refrigeration and Air Conditioning

Refrigerants

Outline

- Desirable characteristics in ideal refrigerant
- Definition of some terms (CFC, HCFC, HFC, etc
- Ozone Depletion
- Safety groups
- Numbering system
- Azeotrops and Zeotropes

Desired properties in Refrigerants

Thermodynamics characteristics

- High latent heat of vaporization
- Low freezing temperature
- Relatively high critical temperature
- Positive evaporator pressure
- Relatively low condensing pressure

Desired properties in Refrigerants

Physical and chemical characteristics

- High dielectric strength of vapor
- Good heat transfer characteristics
- Satisfactory oil solubility
- Low water solubility
- Inertness and stability

Desired properties in Refrigerants

Safety

- ≻Non-flammable
- ≻Non-toxic
- ≻Non-irritable

Additional characteristics of refrigerants

- Low cost
- Environment friendly (Not affecting ozone layer)
- Easy to detect in case of leak

Definitions

Hydrocabons: Hydrogen carbon compounds such as methane (CH₄, Ethane C_2H_6 etc.)

Halons : Chlorine (Cl) , Fluorine (F) or Bromine (B)

Halocabons Originally hydrocarbons which contain Halons, (Ex. CCl₂FH)

CFC Hydrocarbons <u>fully halogenated</u> by CI and/or F atoms (Ex. CCl₂F₂)

HCFC Hydrocarbons <u>partially halogenated</u> by CI and/or F (CHF₂CI)

HFC Hydrocarbons <u>partially halogenated</u> by F atoms only (CHF₃)

ODP Ozone depletion potential [An index to indicate ability of substance to deplete the Ozone layer]

GWP Global worming potential [An index to indicate a substance green house effect]

Ozone Depletion

- Ozone (O₃) layer about 20-80 km above ground
- It Protects earth from harmful UV (0.4 to 0.01 µm) solar radiation
- UV affects life on earth
- Mainly CI atoms react with O₃ and destroy it
- CFC and HCFC contain CI
- International regulation to reduce and stop substances that deplete Ozone layer
- HFC's such as R-134a has no chlorine atoms, and therefore does not affect the ozone layer

Ozone Depletion

Ozone Depletion

Chemical reaction behind Ozone depletion

$O_3 + Cl \rightarrow O_2 + ClO$ $ClO + O \rightarrow Cl + O_2$

Effects of Ozone Depletion

1- Troposphere air quality (formation of harmful chemicals)

2-Human health (Diseases like cancer)

3-Plant life (reduce yields)

4-Animal and marine life

5-Material damage

Safety Groups of Refrigerant

Higher flammability	A3	B3
Lower flammability	A2	B2
No flame propagation	A1	B1
	Lower	Higher
	Toxicity	Toxicity

Refrigerant		Chemical	Molecular	Normal Boiling Point		Safety	
Number	Chemical Name	Formula	Mass	C F		Group	
and the second	Methane series	problematic	Mulu being	10360		den vin	
11	Trichlorofluoromethane	CCl ₃ F	137.4	-24	75	A1	
12	Dichlorodifluoromethane	CCl ₂ F ₂	120.9	-30	-22	A1	
13	Chlorotrifluoromethane	CCIF ₃	104.5	-81	-115	A1	
14	Carbon tetrafluoride	CF ₄	88.0	-128	-198	A1	
21	Dichlorofluoromethane	CHCl ₂ F	102.9	9	48	B1	
22	Chlorodifluoromethane	CHClF ₂	86.5	-41	-41	A1	
23	Trifluoromethane	CHF ₃	70.0	-82	-116		
50	Methane	CH ₄	16.0	-161	-259	A3	
	Ethane series						
114	1,2-Dichlorotetrafluoroethane	CCIF ₂ CCIF ₂	170.9	4	38	A1	
123	2,2-Dichloro-1,1,1-trifluoroethane	CHCl ₂ CF ₃	153.0	27	81	B1	
124	2-Chloro-1,1,1,2-tetrafluoroethane	CHClFCF3	136.5	-12	10		
125	Pentafluoroethane	CHF ₂ CF ₃	120.0	-49	-56		
134a	1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₃	102.0	-26	-15	A1	
143a	1,1,1-Trifluoroethane	CH ₃ CF ₃	84.0	-47	-53		
152a	1,1-Difluoroethane	CH ₃ CHF ₂	66.0	-25	-13	A2	
170	Ethane	CH ₃ CH ₃	30.0	-89	-128	A3	
	Propane series						
290	Propane	CH ₃ CH ₂ CH ₃	44.0	-42	-44	A3	
	Inorganic compounds						
717	Ammonia	NH ₃	17.0	-33	-28	B2	
718	Water	H ₂ O	18.0	100	212	A1	
744	Carbon dioxide	CO ₂	44.0	-78^{a}	-109^{a}	A1	
764	Sulfur dioxide	SO ₂	64.1	-10	14	B1	
	Zeotropes						
400	R-12/114 (must be specified)	None	None			A1/A	
	Azeotropes						
502	B-22/115 (48.8-51.2)	19 66	112.0	-45	-49	A1	

Table 15-1 Properties of Selected Refrigerants

۱۳

Numbering System of Refrigerants

Hydrocarbons and derivatives

- 1. The first digit on the right is the number of fluorine (F) atoms in the compound.
- 2. The second digit from the right is **one more** than the number of hydrogen **(H)** atoms in the compound.
- 3. The third digit from the right is **one less** than the number of carbon **(C)** atoms in the compound. When this digit is zero, it is omitted from the number.

Numbering of refrigerants

- Blends are designated by their respective refrigerant numbers and weight proportions, named in the order of increasing normal boiling points of the components, for example R-22/12 (90/10)
- 5. Zeotropes blends that have been commercialized are assigned and identifying number in the 400 series accompanied by the weight proportion of the components, for example R-400(90/10) for mixtures of R-12 and R-114.
- 6. Azeotropes that have been commercialized are assigned and identifying number in the 500 series with no composition shown.

Numbering of refrigerants

- 7. Miscellaneous Organic refrigerants are assigned serial numbers in the 600 series.
- 8. Inorganic compounds are designated by adding 700 to their molecular mass; for example, **water** is 718.
- The letter C is used before number designations to identify cyclic derivatives. Lowercase letters are appended after numbers to distinguish isomers refrigerants with the same chemical composition but with differing molecular structures.

Example

Zeotrope and Azeotropes

Azeotropes: Evaporation and condensation occur at a single temperature [Just like pure substances]

Zeotrope: Evaporation and condensation occur at different temperatures

Temperature Glide For Zeotropes

Azeotropes, Zeotropes and Temperature glide

Figure 15-4 Comparison of pressure–enthalpy diagrams for a zeotrope and an azeotrope.

Methane series

Figure 4.1 Normal boiling points in °F (°C) for the methane series of chlorofluorocarbon refrigerants arranged according to molecular structure.

Absolute	Tempera	emperature*, °C	femperature*, °C	operature*, °C	Density,	Volume,	Enth kJ	alpy, /kg	Enti kJ/(i	ropy, kg·K)	Specific kJ/(l	Heat c _p , ⟨g⋅K⟩	c.lc	Velocity n	of Sound, 1/s	Absolute Pressure.
MPa	Bubble	Dew	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Vapor	Liquid	Vapor	MPa		
100930	-82.79	-74.95	1496.9	1.897	91.30	365.97	0.5293	1.9442	1.245	0.662	1.180	1025.	149.1	0.01000		
163950	-72.79	-65.14	1468.5	0.9907	103.81	372.02	0.5934	1.9078	1.257	0.685	1.179	968.	151.9	0.02000		
104100	-61.48	-54.06	1435.6	0.5176	118.11	378.83	0.6627	1.8739	1.271	0.714	1.180	908.	154.6	0.04000		
10686	-54.16	-46.88	1413.8	0.3539	127.48	383.20	0.7061	1.8553	1.282	0.734	1.182	869.	156.2	0.06000		
115300	-48.59	-41.42	1397.1	0.2701	134.64	386.48	0.7384	1.8427	1.291	0.751	1.184	841.	157.2	0.08000		
1/0000	-\$4.04	-36.97	1383.2	0.2190	140.53	389.13	0.7643	1.8333	1.298	0.765	1.187	818.	157.9	0.10000		
101520	-43.77	-36.70	1382.3	0.2163	140.89	389.29	0.7658	1.8328	1.299	0.766	1.187	816.	157.9	0.10132		
111000	-40.17	-33.18	1371.2	0.1844	145.58	391.35	0.7861	1.8258	1.305	0.778	1.189	798.	158.4	0.12000		
LINOO	-36.78	-29.85	1360.6	0.1594	150.03	393.28	0.8050	1.8196	1.312	0.790	1.192	781.	158.8	0.14000		
115000	-33.75	-26.89	1351.1	0.1405	154.02	394.99	0.8217	1.8143	1.318	0.801	1.195	766.	159.1	0.16000		
138300	-31.00	-24.20	1342.3	0.1256	157.65	396.51	0.8367	1.8098	1.324	0.811	1.197	752.	159.4	0.18000		
00001.8	-28.48	-21.73	1334.2	0.1137	161.00	397.90	0.8504	1.8058	1.329	0.821	1.200	740.	159.5	0.20000		
0.052.0	-26.15	-19.45	1326.7	0.1038	164.11	399.16	0.8630	1.8022	- 1.335	0.830	1.203	728.	159.7	0.22000		
124000	-23.98	-17.33	1319.6	0.09552	167.02	400.33	0.8746	1.7989	1.340	0.839	1.206	717.	159.8	0.24000		
12/000	-21.95	-15.34	1312.9	0.08847	169.75	401.41	0.8855	1.7960	1.345	0.847	1.208	707.	159.8	0.26000		
000255	-20.03	-13.46	1306.5	0.08240	172.34	402,42	0.8957	1.7933	1.349	0.855	1.211	697.	159.9	0.28000		
63380	-18.22	-11.69	1300.5	0.07712	174.80	403.36	0.9053	1.7908	1.354	0.863	1.214	688.	159.9	0.30000		
111100	-16.49	-10.00	1294.7	0.07247	177.14	404.25	0.9144	1.7885	1.359	0.871	1.217	680.	159.9	0.32000		
634000	-14.85	-8.39	1289.1	0.06835	179.38	405.09	0.9231	1.7863	1.363	0.879	1.220	672.	159.9	0.34000		
	-13.28	-6.86	1283.8	0.06467	181.53	405.88	0.9313	1.7843	1.368	0.886	1.222	664.	159.8	0.36000		
	-11.78	-5.39	1278.6	0.06137	183.59	406.63	0.9392	1.7824	1.372	0.893	1.225	656.	159.8	0.38000		
03051	-10.33	-3.98	1273.6	0.05838	185.58	407.34	0.9467	1.7806	1.376	0.900	1.228	649.	159.7	0.40000		
	-8.94	-2.62	1268.7	0.05567	187.50	408.02	0.9539	1.7789	1.380	0.907	1.231	642.	159.6	0.42000		
64400	-7.60	-1.31	1264.0	0.05320	189.36	408.67	0.9609	1.7772	1.385	0.914	1.234	636.	159.5	0.44000		
	-6.30	-0.04	1259.5	0.05094	191.16	409.29	0.9676	1.7757	1.389	0.921	1.237	629.	159.4	0.46000		
1.(850)	-5.05	1.18	1255.0	0.04885	192.91	409.88	0.9741	1.7742	1.393	0.928	1.240	623.	159.3	0.48000		
85000	-3.84	2.36	1250.7	0.04693	194.61	410.45	0.9803	1.7728	1.397	0.934	1.242	617.	159.2	0.50000		
	-0.95	5.18	1240.3	0.04272	198.65	411.77	0.9951	1.7695	1.407	0.950	1.250	603.	158.9	0.55000		
0,894	1.74	7.80	1230.4	0.03919	202.46	412.97	1.0089	1.7665	1.416	0.966	1.257	589.	158.6	0.60000		
\$1900	4.26	10.26	1221.0	0.03618	206.05	414.07	1.0217	1.7637	1.426	0.981	1.265	577.	158.2	0.65000		
171000	6.64	12.58	1212.0	0.03359	209.47	415.07	1.0339	1.7611	1.436	0.997	1.273	565.	157.8	0.70000		
(750)	8.90	14.78	1203.4	0.03133	212.72	416.00	1.0453	1.7587	1.445	1.012	1,280	553.	157.4	0.75000		
	11.05	16.87	1195.0	0.02934	215.84	416.85	1,0562	1.7564	1.455	1.027	1.288	543.	157.0	0.80000		
	13.10	18.86	1187.0	0.02758	218.83	417.65	1.0665	1.7542	1.464	1.042	1.297	532.	156.5	0.85000		
	15.06	20.77	1179.1	0.02601	221.71	418.38	1.0764	1.7522	1.474	1.056	1.305	522.	156.1	0.90000		
	16.94	22.59	1171.5	0.02460	224.49	419.06	1.0858	1.7502	1.483	1.071	1.314	513.	155.6	0.95000		
	18.75	24.35	1164.1	0.02333	227.18	419.69	1.0949	1.7483	1.493	1.086	1.322	504.	155.1	1.00000		
00000	22.17	27.67	1149.8	0.02111	232.31	420.83	1,1121	1.7446	1.512	1.116	1.340	487.	154.1	1.10000		

Refrigerant 407C [R-32/125/134a (23/25/52)] Properties of Liquid on the Bubble Line and Vapor on the Dew Line

Refrigerant Number	Chemical Name ^{a,b}	Chemical Formula ^a	Molecular Mass ^a	Normal Boiling	Safety
Methane Sei	ries			ronny e	Group
11	Trichlorofluoromethane	CCLE	1274	24	
12	Dichlorodifluoromethane	CCLF	137.4	24	Al
12B1	Bromochlorodifluoromethane	CBrCIE.	120.9	-30	Al
13	Chlorotrifluoromethane	CCIF	104.5	-4	A 1
14	Tetrafluoromethane (carbon tetrafluoride)	CF.	88.0	-01	AI
21	Dichlorofluoromethane	CHClaF	102.9	-128	AI
22	Chlorodifluoromethane	CHCIF	86.5	- 41	DI
23	Trifluoromethane	CHF ₂	70.0	-41	AI
30	Dichloromethane (methylene chloride)	CHaCla	84.9	40	AI D2
31	Chlorofluoromethane	CH ₂ CIF	68.5	_0	D2
32	Difluoromethane (methylene fluoride)	CH ₂ F ₂	52.0	-52	Δ 2
40	Chloromethane (methyl chloride)	CH ₃ Cl	50.4	-24	R2
41	Fluoromethane (methyl fluoride)	CH ₁ F	34.0	-	D2
50	Methane	CH	16.0	-161	Δ 2
Ethane Serie	S	4	1010	101	AJ
113	1,1,2-trichloro-1,2,2-trifluoroethane	CCL ECCLE	107.4	10	1212
114	1,2-dichloro-1,1,2,2-tetrafluoroethane	CCIE CCIE	187.4	48	AI
115	Chloropentafluoroethane	CCIF CF	170.9	4	Al
116	Hexafluoroethane	C 3CF	134.5	-39	Al
123	2,2-dichloro-1,1,1-trifluoroethane	CHCLCE	138.0	-78	Al
124	2-chloro-1,1,1,2-tetrafluoroethane	CHCIECE	153.0	27	Bl
125	Pentafluoroethane	CHEICE	136.5	-12	Al
134a	1,1,1,2-tetrafluoroethane	CHF2CF3	120.0	-49	Al
141b	1,1-dichloro-1-fluoroethane	CH_2PCP3	102.0	-26	Al
142b	1-chloro-1.1-difluoroethane	CH CCI2F	117.0	32	
143a	1.1.1-trifluoroethane	CH ₃ CCIF ₂	100.5	-10	A2
152a	1.1-difluoroethane	CH ₃ CF ₃	84.0	-47	A2
170	Ethane	CH ₃ CHF ₂	66.0	-25	A2
Ethers		CH ₃ CH ₃	30.0	-89	A3
E170	Dimethyl ather				
Brow C. I	Diffettiyl etter	CH ₃ OCH ₃	46.0	-25	A3
Propane Serie	25				
218	Octafluoropropane	CF3CF2CF3	188.0	-37	A1
2361a	1,1,1,3,3,3-hexafluoropropane	CF ₃ CH ₂ CF ₃	152.0	-1	A1
245a	1,1,1,3,3-pentafluoropropane	CF3CH2CHF2	134.0	15	B1
290	Propane	CH ₃ CH ₂ CH ₃	44.0	-42	A3
Cyclic Organi	c Compounds (see Table 2 for blends)				
C318	Octafluorocyclobutane	-(CF ₂) ₄ -	200.0	-6	A 1
Miscellaneous C	Organic Compounds	2/4	20010	0	741
Hydrocarbons					
600	Butane	011 OIL OIL OIL			
600a	Isobutane	CH ₃ CH ₂ CH ₂ CH ₃	58.1	0	A3
0	isoutane	CH(CH ₃) ₂ CH ₃	58.1	-12	A3
Oxygen Comp	ounds				
611	Ethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	74.1	35	
011	Methyl formate	HCOOCH ₃	60.0	32	B2
Sulfur Compo	unds				
620	(Reserved for future assignment)				
Nitrogen Com	pounds				
630	Methyl amine	CH NH	21.1	7	
631	Ethyl amine	CH ₂ CH ₂ (NH ₂)	31.1	-/	
Inorganic Com	pounds	01130112(11112)	45.1	17 -	
702	Hydrogen				
704	Helium	H ₂	2.0	-253	A3
717	Ammonia	He	4.0	-269	Al
718	Water	NH ₃	17.0	-33	B2
720	Neon	H ₂ O	18.0	100	A1
728	Nitrogen	Ne	20.2	-246	A1
732	Oxygen	N ₂	28.1	-196	A1
740	Argon	O ₂	32.0	-183	
744	Carbon dioxide	Ar	39.9	-186	Al
	Caroon dioxide	CO ₂	44.0	-78	A1

Comparative Refrigerant Performance per Kilowatt of Refrigeration

	Refrigerant	Evan-	Con-		Net Refrig	Refrig-		Specific	Comp-		Coeffi-	Com-
No.	Chemical Name or Composition (% by mass)	orator Pressure, MPa	denser Pressure, MPa	Com- pression Ratio	erating Effect, kJ/kg	erant Circulated, g/s	Liquid Circu- lated, L/s	Volume of Suction Gas, m ³ /kg	ressor Displacem ent, L/s	Power Consump- tion, kW	cient of Perfor- mance	pressor Discharge Temp., K
170	Ethane	1.608	4.639	2.88	161.71	6.10	0.0219	0.0338	0.206	0.365	2.70	323
744	Carbon dioxide	2.254	7.18	3.19	133.23	3.88	0.0064	0.0168	0.065	0.192	2.69	343
1270	Propylene	0.358	1.304	3.64	286.17	3.46	0.0070	0.1299	0.449	0.220	4.50	315
290	Propane	0.286	1.075	3.76	277.90	3.53	0.0073	0.1562	0.551	0.218	4.50	309
502	R-22/115 (48.8/51.2)	0.343	1.312	3.83	105.95	9.43	0.0079	0.0508	0.479	0.228	4.38	311
507A	R-125/143a (50/50)	0.379	1.459	3.85	110.14	9.07	0.0089	0.0508	0.461	0.239	4.18	308
404A	R-125/143a/134a (44/52/4)	0.365	1.42	3.89	114.15	8.75	0.0086	0.0537	0.470	0.237	4.21	309
410A	R-32/125 (50/50)	0.478	1.872	3.92	167.89	5.84	0.0056	0.0545	0.318	0.222	4.41	324
125	Pentafluoroethane	0.403	1.561	3.87	85.30	11.41	0.0098	0.0394	0.449	0.244	3.99	304
22	Chlorodifluoro- methane	0.295	1.187	4.02	162.67	6.13	0.0052	0.0779	0.478	0.214	4.66	326
12	Dichlorodifluoro- methane	0.181	0.741	4.09	117.02	8.49	0.0066	0.0923	0.784	0.212	4.70	311
500	R-12/152a (73.8/26.2)	0.214	0.876	4.09	139.68	7.08	0.0063	0.0939	0.665	0.212	4.66	314
407C	R-32/125/134a (23/25/52)	0.288	1.26	4.38	163.27	6.11	0.0054	0.0805	0.492	0.222	4.50	321
600a	Isobutane*	0.088	0.403	4.58	263.91	3.76	0.0069	0.4073	1.533	0.215	4.62	303
134a	Tetrafluoroethane	0.163	0.767	4.71	148.03	6.71	0.0056	0.1214	0.814	0.216	4.60	310
124	Chlorotetrafluoro- ethane*	0.088	0.443	5.03	117.83	8.41	0.0063	0.1711	1.439	0.214	4.62	303
717	Ammonia	0.235	1.162	4.94	1103.14	0.90	0.0015	0.5117	0.463	0.210	4.76	372
600	Butane*	0.056	0.283	5.05	292.24	3.53	0.0062	0.6446	2.274	0.218	4.74	303
11	Trichlorofluoro- methane	0.02	0.125	6.25	155.95	6.36	0.0043	0.7689	4.891	0.197	5.02	316
123	Dichlorotrifluoro- ethane	0.016	0.109	6.81	142.28	7.02	0.0048	0.8914	6.259	0.204	4.90	306
113	Trichlorotrifluoro- ethane*	0.007	0.054	7.71	122.58	7.84	0.0051	1.6818	13.187	0.200	4.81	303

*Superheat required.

 T_{E} =256K, T_{C} =303 K