1- Consider a counter current force draft cooling tower with inlet water temperature of 45°C. Use both Fraas approximate method and Chebyshev integration method to find the cooling tower characteristics CTC for water to air mass ratio of 0.5, 1.5, 1 and 2, and fill the table below. Show your calculations

L/G	twi	two	t_{ai}^*	Range	Approach	CTC	CTC
						Fraas	Chebyshev
0.5	45	30	25				
1.0	45	30	25				
2.0	45	30	25				
1.5	45	35	25				
1.5	45	35	20				

- 2-For the first case considered above it is required to study the effect of changing the ratio L/G on the air operation line. Assume the mass flow rate of water to be 10 kg/s, draw the variation of saturated air enthalpy at the water temperature with the temperature variations. On the same figure draw the air operation line for different values of L/G, then calculate the maximum L/G ratio, and form it find G_{min} . Assume G is 1.4 G_{min} , calculate the mass flow rate of air, and find CTC at this condition.
- 3-Using Fraas approximate method for finding the cooling tower characteristic CTC to find the water outlet temperature exiting (i.e. two) the cooling tower. Take the following data:

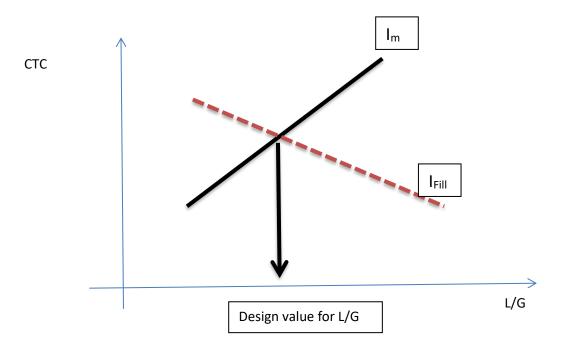
$$t_{wi}$$
=45 °C, t_a =40 °C, t_{ai}^* = 22 °C, L/G=1.3. CTC=0.60

4-Use the cooling tower effectiveness method to find the exit condition of air and water from a counter current cooling tower. The following information is given

$$t_{wi}$$
=45 °C, t_a =35 °C t_{ai}^* = 23 °C, CTC=1.5, L/G=1.2 \dot{m}_a = 10 kg/s

Also calculate approximately the rate of water evaporated in the air \dot{m}_{evap}

5-In designing a cooling tower the ratio L/G is found by matching CTC from thermal behavior i.e. by integrating (which is called Merkel Integration: I_m)


$$I_m = \frac{h_d a_v V}{\dot{m}_w} = \int \frac{c p_w dt_w}{h_s - h_a} \tag{1}$$

and the cooling tower CTC from mass transfer characteristics of the packing. Consider one type of fill where the CTC is given by the following equation

$$I_{Fill} = \frac{h_d a_v V}{m_w} = e H \left(\frac{m_w}{m_a}\right)^{-n} \tag{2}$$

for triangular slats with e=0.32 and n=0.45

Consider a cooling tower with inlet water temperature of 35° C, outlet temperature of 20° C and inlet air condition of (dry bulb temperature t_{ai} =15°C and relative humidity ϕ_i =20%. Use Chebeyshev and find CTC for several values of L/G (say 0.4, 0.6, 0.8, 1.0, 1.4, 1.8) and plot CTC vs L/G. Also use equation 2 (assumed height of cooling tower to be H=4 m) and find CTC for the same values of L/G and plot on the same graph, then find the design value of L/G which is the intersection of the two lines. You can use MATLAB or Excel to solve this problem.

