King Abdulaziz University
Faculty of Engineering
Mechanical Engineering

MEP 460
Heat Exchanger Design
Spring 2022
HW. \# 01

1-A wall of a house is made of three layers starting from outside to inside: a plywood of thickness 25 mm , Glass fiber ($28 \mathrm{~kg} / \mathrm{m}^{3}$), and a plaster board. The inside temperature is $25^{\circ} \mathrm{C}$ and the outside temperature is $40^{\circ} \mathrm{C}$. Draw the representative resistance circuit of the wall and find the total resistance. The wall area is $250 \mathrm{~m}^{2}$. The convection heat transfer coefficients are: $\boldsymbol{h}_{o}=\mathbf{5 0} \mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ and $\boldsymbol{h}_{i}=5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

a) Calculate the heat transfer rate into the house
b) Which of the thermal resistance is the dominant one?
c) If in a windy condition the convective heat transfer on the outside wall is increased to 90
$\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$, calculate the heat into the house

2-A stainless steel (AISI 304) tube used to transport a chilled pharmaceutical has an inner diameter of 30 mm and a wall thickness of 4 mm . The pharmaceutical and ambient air are at temperatures of $6^{\circ} \mathrm{C}$ and $23^{\circ} \mathrm{C}$, respectively, while the corresponding inner and outer convection coefficients are 500 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ and $5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, respectively.
(a) What is the heat gain per unit tube length?
(b) What is the heat gain per unit length if a $\mathbf{2 5}-\mathrm{mm}$ thick layer of calcium silicate insulation ($k_{\text {ins }}=$ $0.050 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) is applied to the tube?

3-Consider a hallow cylinder with outer radius of $\mathrm{r}_{1}=25$ mm exposed to air at $\mathrm{T}_{\infty}=300 \mathrm{~K}$ with convective heat transfer h of $70 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. The cylinder height H is 0.15 m .
a) Calculate the heat transfer from the external wall of the cylinder assuming the outer surface of the cylinder is at $T_{b}=500 \mathrm{~K}$.
b) Assume 10 circular fins were added to the outer surface of the cylinder. The fin thickness t is 5 mm , the fin length
 $\mathbf{L}=\mathbf{3 0} \mathrm{mm}$ as shown in the figure. Assume the fin material has a thermal conductivity of $\mathbf{6 0} \mathrm{W} / \mathrm{m} . \mathrm{K}$. Calculate the suface overall efficiency and the heat rate.

4-A pipe made of commercial steel of length 23 meters and inside diameter of 3.0 cm has four 90° elbows ($k_{\text {elbow }}=\mathbf{0 . 8 5}$) Take the entrance friction coefficient $k_{\text {enterance }}$ to be 0.5 . The water velocity inside the pipe is $2 \mathrm{~m} / \mathrm{s}$, and the water can be considered to be at $30^{\circ} \mathrm{C}$. Calculate the pressure drop due to major and minor losses in the pipe. Repeat if the pipe diameter is changed to 2 cm , assuming the same flow rate in both cases.

5-A tube bank uses in-lined arrangement with 25 mm outside diameter tube, $S_{T}=50 \mathrm{~mm}, S_{L}=50 \mathrm{~mm}$, and a tube length of 1 m . There are 10 tube rows in the flow direction (i.e. $N_{L}=10$) and 7 tubes per row (i.e. $N_{T}=7$). Air at $T_{i}=27^{\circ} \mathrm{C}$ and velocity $\mathrm{V}=15 \mathrm{~m} / \mathrm{s}$ is moving across the tubes while the wall temperature of the tubes is kept at $T_{s}=100^{\circ} \mathrm{C}$. Determine
a) Air outlet temperature T_{o}
b) Air pressure drop through the tube bank
c) Fan power needed to force the air across the tubes

You may use the following relation (Equation 7.63 Incropera $7^{\text {th }}$ edition) to find the outlet temperature of the air

$$
\frac{T_{s}-T_{o}}{T_{s}-T_{i}}=\exp \left(-\frac{\pi D N h}{\rho C_{p} V N_{T} S_{T}}\right)
$$

where N is the total number of tubes i.e. $N=N_{T} * N_{L}$

