
MEP 460 Heat Exchanger Design S2022 HW. # 09

1) 7.10 in your textbook. {change the cold mass flow rate in the annulus from 20,000 kg/h to 24,000 kg/h}

2) Iterative design of Double pipe Heat Exchange

Use the iterative procedure to size a double pipe i.e. finding inner pipe diameters d_i , D_i , heat transfer area A_o , heat exchanger length L, pressure drop in the tube and annulus sides. The required Residual Sum of Squares Rss should be less than 100 Pa. The input data is given in the following table

Given data

Tube side	Annulus	Tube side	Annulus	Inside	Outside	Tube wall
mass flow	side mass	fluid	side fluid	fouling	fouling	thickness
rate	flow rate			factor	factor	
$\dot{m}_t = 1.4$	$\dot{m}_a = 1.5$	water	water	R_{fi} =0.00018	R_{fo} =0.00018	t=2
[kg/s]	[kg/s]			$[m^2.K/W]$	$[m^2.K/W]$	[mm]

Inlet cold fluid temp.	Outlet cold fluid temp.	Inlet hot fluid temp.	Outlet hot fluid temp.	Tube side Max. allowable pressure drop	Annulus Max. allowable pressure drop
T_{ci} =25	$T_{co} = 50$	$T_{hi} = 150$	T_{ho}	$\Delta P_{t,max} = 1500$	$\Delta P_{a,max}$ =1500
[°C]	[°C]	[°C]	[°C]	[Pa]	[Pa]

Tube side	Annulus side	Which fluid in	Tube thermal	
operating	operating	the tube side	conductivity	
pressure	pressure			
$P_t=2$	Pa=150	hot	$k_t = 60$	
[MPa]	[kPa]		W/m.K	

At least perform three iterations. Summarize your results in tables.