From Kakac 3ed edition book

Problem	Modifications	Answers
6.2	Change the overall heat transfer coefficient from 300	% reduction in heat transfer
	W/m^2 .K to 350 W/m^2 .K, and total fouling of 0.00070	8.55
	m ² .K/W. Get the outlet temperatures for fouled HX	
6.3	Change the inlet gas temperature from 150° C to 170	$U_c=107.1 \text{ W/m}^2.\text{K}, U_f=105.1$
	°C, Let $h_0=120 \text{ W/m}^2$.K, $h_i=1200 \text{ W/m}^2$.K	W/m ² .K, OS=1.88 %, Tube
		length per tube pass 5.2 m
6.4	Change the outlet cold temperature after 3 months from	$V=1.6 \text{ m/s}, U_c=592.3 \text{ W/m}^2\text{K},$
	46 °C to 45° C.	$R_{fi}=3.554E-4 m^2.K/W$
6.5	Let the thickness of calcium carbonate be 1.2 mm and	$R_{\rm ft}=9.714*10^{-4} {\rm m}^2.{\rm K/W}$
	the thickness of magnesium phosphate to be 1.0 mm.	
6.6	Change the outlet temperature from 80 °C to 75 °C.	U_{f} =1119 W/m ² K, OS=78.78 %
	Change U value from 2100 to 2000 W/m ² K	R_{ft} =3.3939E-4 m ² . K/W
6.10	Change the outlet temperature after 6 months to 85 °C	q_{new} =1.0E6 W, q_{6m} =836894 W,
	instead of 95 °C.	$U_{\rm f}$ =2796 W/m ² .K
	6.10b Calculate the outlet water temperature if the heat	$R_{\rm ft}=0.000072 \text{ m}^2.\text{K/W}$
	exchanger fouling factor reached 0.00015 m ² .K/W	
А	List five types of fouling found in heat exchangers	
В	What is the difference between on-line and periodic	
	fouling cleaning? Give example for each	
С	Draw a sketch to show the difference between linear	
	and asymptotic fouling build up.	
D	What are the effects of fouling on heat exchangers?	
F	What is the difference between crystallization and	
	biological fouling.	