King Abdulaziz University Faculty of Engineering Mechanical Engineering

MEP 460 Heat Exchanger Design Spring 2022 HW. # 05 HX methods

Homework on Heat Exchanger methods, Ch. 11 of Incropera 7th edition textbook

Problem	Modifications	Remarks	Answers
11.7	Change the mass flow rate of	Fouling effect	$U_c=2563 \text{ W/m}^2.\text{K}$
	water from 400 kg/s to 500 kg/s		$U_f=1991 \text{ W/m}^2.\text{K}$
			Two=26.6 °C
11.13	Change U from 2000 W/m ² K to	Heat transfer area for	$A_{PF}=3.43 \text{ m}^2$
	1800 W/m ² .K. Calculate the	different heat exchanger	$A_{CF}=2.94 \text{ m}^2$
	heat exchanger effectiveness	types	$A_{\text{shell}}=3.15 \text{ m}^2$
	for each case		$A_{cross}=3.16 \text{ m}^2$
11.53 a,b	Change the water flow rate from	Shell and tube HX. Find	T _{co} =39.5 °C, T _{ho} =60.2 °C
	6.5 kg/s to 7 kg/s and U from	outlet hot and cold	$h_i = 2436 \text{ W/m}^2 \text{K}$
	$200 \text{ W/m}^2\text{K} \text{ to } 180 \text{ W/m}^2\text{.K}$	temperatures	
11.81	Change the hot gases flow rate	Compact gas-liquid heat	$h_0=177.8 \text{ W/m}^2\text{K}$
Incropera.	from 1.25 kg/s to 1.6 kg/s .	exchanger. Continuous	V=0.024 m ³
6 th edition	_	fins	$U_0=60 \text{ W/m}^2\text{K}$
11.83	Change the gas flow rate from	Gas-liquid compact heat	h _o =155 W/m ² .K
Incropera.	1.5 kg/s to 1.2 kg/s	exchanger	$U_0=120 \text{ W/m}^2.\text{K}$
6 th edition			T _{ho} =9.85 °C