King Abdulaziz University
Faculty of Engineering
Mechanical Engineering

MEP 460 Heat Exchanger Design Spring 2022 HW. # 02

Homework on boiling and condensation, Ch. 10 of Incropera 7th Edition textbook

Problem	Modification	6 th edition
10.12	Change T _s from 115 to 117.0 °C	
10.14a	Change q_s'' to be 85% of q_{max}'' instead of 50%	
10.30	Change T _s to 600 °C	
	10.30 a Calculate the minimum film pool boiling heat flux (at	
	Leidenfrost point)	
	10.30 b What will be the surface temperature T _s at Leidenfrost point	
	when considering only convective film boiling	
	10.30 c What will be the corresponding surface temperature and the	
	excess temperature if one assumes the heat flux at Leidenfrost point is	
	operating in the nucleate pool boiling region.	

Additional problem

Starting with the equation for \bar{h}_L for laminar film condensation on vertical plate (as given by Eq. 10.31), drive equation 10.38 which is

$$\overline{Nu}_L = \frac{\overline{h}_L (\nu_l^2/g)^{1/3}}{k_I} = 1.47 Re_\delta^{-1/3}$$

Where Re_{δ} is given by

$$Re_{\delta} = \frac{4g\rho_l(\rho_l - \rho_v)\delta^3}{3\mu_l^2}$$

Notice that from Eq. (10.26), one can write

$$\delta^4 = \frac{4k_l \mu_l (T_{sat} - T_s) L}{g \rho_l (\rho_l - \rho_v) h'_{fg}}$$

Also use the approximation

$$\rho_l(\rho_l-\rho_v)\approx\rho_l^2$$