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Signals & System Response (Ch.2 & Ch.3)

1-Measurment system (input signals and output signals)
2-Types of Signals
3-Average and RMS (Root-Mean-Squared) of a signal
4-Sinusoidal periodic signals
5-Fourier’s wave form
6-Generlized form of differential equation for measuring system
7-Zero order system
8-First order system
8a-step input and system response for first order system
8b-frequency response for first order system
9-2"d order system
9a-step response for 2" order system
9b-frequency response for 2" order system



1-Measurment system (input signals and

output signals)
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(a) Analog signal representation

Figure 2.2 Analog signal concepts.

Continuous variation with
time
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2-Types oOf signal

" Time-discrete = Digital

Time

(a) Discrete time signal

Specified at certain
interval of time

7 Quantization levels
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Time

(a) Digital signal

Figure 2.4 Digital signal representation

Specified at certain interval
of time & certain levels



2-Types of signal

Static and Dynamic signals

Signals:

Static
/

o Dynamic

Signal variation with time is
negligible compared to
time span of the
measurements

Example: measuring
room temperature

Signal variation with time is
comparable to time span
of the measurements

Example: measuring the
pressure inside a cylinder
of an internal combustion
engine 5



Samples of the input functions to
measurement system

ut)

0

1-Step function 2-Impulse 3-Ramp
Sine wave
%
E
E=s
Time —

4-Sine wave
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Samples of the input functions to
measurement system

Deterministic variables

Ramp

Step

VA

/

Nondeterministic variable

Figure 2.5 Examples of dynamic signals.
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NV

| M@M




Samples of the input functions to
measurement system

Table 2.1 Classification of Waveforms

[. Static y(t) = Ag
[I. Dynamic
Periodic waveforms

Simple periodic waveform y(t) = Ag + Csin(wt + b)
Complex periodic waveform y(t) = Ag + Z C,sin(nwt + b,
n=l1

Aperiodic waveforms

Step” y(1) = AgU(1)
= Apfort >0
Ramp y(t) =Apt for 0 < t < 15
Pulse” y(1) = AgU(t) — AgU(t — 1;)
[II. Nondeterministic waveform y(t) = Ag + Z C,sin (nwt + &, )
n=l1

“U(t) represents the unit step function, which is zero for ¢t < 0 and 1 for ¢ = (.

"t represents the pulse width.



Analog and digital representation of wave signal

¥ A Amplitude of the y A
fluctuating or AC
component o

N\ /X K
AV LA

Average value value
(DC offset) |

a—
% t, 't O

(a) (b)

Figure 2.6 Analog and discrete representations of a dynamic signal.



3-Average and RMS (Root-Mean-
Squared) of a signal

Function average

RMS=Root mean squared

1 rl>
= v dt
ZZ o Z1 J 1

Yrms




For discrete function

v(1)

Average

RMS value

yrms




Subtracting the DC offset from the signal
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(a) Signal prior to subtracting DC offset
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T
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Time (s} Figure 2.7 Effect of subtracting DC

{b) Fluctuating componant of signal offset for a dynamic signal.



Example 2.1

| | | Evaluation of mean and
Suppose the current passing through a resistor can be described by . .
1(t) = 10sin RMS of a periodic wave
KNOWN [f)=10 sin ¢

P‘flﬂrﬂ T ﬂ.“lj .lrr|'|'|5 Wiﬂ-l ff =T ﬂ."d 211'

SOLUTION The average value for a time from 0 to 7, is found from Equation 2.1 as

iy iy
J I(r)dt J 10 sin rdr
T = =

1 i

' i
J dt /
0
Evaluation of this integral vields
I=—|-10cos .rj:]
I

With f; = mr, the average value, [, is 20/m. For ty = 2, the evaluation of the integral yields an
average value of zero.
The rms value tor the ime period ( to #71s given by the application ot Equation 2.4, which yields

] ] ¢

t ¥ s ¥
Tme = I.'JLJ It) dt = I."Ilj (10 sint)"dt
15' Ii Jo 15' If Jo

This integral 1s evaluated as

I .ﬂ'mn( L :)"f
= [— ——C05IrsMmMi -+ —
s | rf 2 2 0

For 1y = 7, the rms value 1s v/50. Evaluation of the integral for the rms value with 1y = 2 also

yields V50, 3



4-Sinusoidal periodic signals

Signal amplitude and frequency

OSTE |

y = sin(wt)
sin of 4 o Circular frequency
ot = ot { ol =0 [rad/s]
: T=period [s]
f=frequency [1/s]=Hz
ot =% f=1/T
27
_________ y=1 T p— E p— ?
N\




Simple mass spring system

Unextended
length of spring

m

mt
Equilibrium position

dy
Velocity: ?:f ,l

Figure 2.9 Spring-mass system.

m

Restoring

l

force

dt?

d%y
Acceleration: —

Applying force
balance

ZFzma

For free body:

d?y

—+ky=0
mdt2+y

Spring force

F=ky
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Simple mass spring system

Differential equation

d2

y
d2+ky—0

Solution form

y = A cos ol + B sin w!?

Can be put in form of only sin or cos functions such as

y = Ccos (ot — b)

y = Csin(wf + d")



Useful relations for sin & cos functions

Acoswl +Bsinwl = \/A2 + B’cos(wt — )

Acos ol + Bsinwl = \/A2 + B%sin(w? + ¢*)

B A T
:[L _1— *:[t _1— *:——
¢ = tan y b o b > ¢

y = Ccos (ol —d)

y = Csin(wf + &™)

17



5-Fourier’s wave form

Any function with period T=2r can be written as
combination of sin and cos function (i.e. Fourier’s form)

OO0
y(t) = Ay + Z (A, cos nt + B, sin nt)

=\

(" |
Ay = o [ W‘fff)
[ (™
A, = — y(1)cos ntdt
Trn — T
[ ("
B, =—| y(t)sinntdt
(

LT, _1T

18



5-Fourier’s wave form

A function with period T can be also be presented by

T/2

e
|

y(1)dt
J-1)2
T2

T
=
|

y(1)cos nwidt
J-1)2

T2

&
|

y(1)sin nowtdt
J-1/2

Sl N N =

v(t) = Ag + Z (A, cos nwt + B, sin nwt)

n=I1
19



5-Fourier’s wave form

First
Example 2.4 : partial
Find the Fourier coefficient for a sUM
square periodic function as shown
felow Second - /AVA\
i partial " ‘[ \ /
T sum LN
¥t ok ¢+
Thid /N
B partial " \ /
Representation of a S N
square wave using )
Fourier's functions A AcnanA
Fourth w o / \
| | partial I \AAA/
(sinr Iisinﬁr | EsinSI | ) sum T [VT IVJ L




Chapter 3

Measurement System Behavior

21



Interaction of a measurement
system with input signal

y(0)

Initial conditions

Input signal Measurement Qutput signal . R o T
- system o  Figure 3.2 Measurement system operation on
F(2) operation y(t) an input signal, F(7), provides the output

signal, y(7).




6- General form of the differential
equation of a measuring system

|
d"y d' "y dy |
e+ ay—+ agy = F (.i"jl

—— =+ Ap—1]
dm ] di

n is the order of the differential equation



7- Zero-order systems

Differential equation agy = F(t)

The solution

K = static sensitivity



8- First order system

Differential equation form

dy
ala‘l‘ Agy = F(t)

a; dy F(t)
Ao dt Ao

dy
— = KF(t
Tdt+y (t)

T is the time constant [s]



8a-step input and system response for first order system

2_

Uz) 1

F(t) = AU(t)

Time, ¢t

Step input

Figure 3.5 The unit step function, U(1).

d
2 Ly = KR

Output Signal
—_—

First order measurement system 26



8a-step input and system response for first order system

Solution for first order system exposed to step input
Ty +y = KF(t) = KAU(t)

Solution y consists of two parts; homogenous solution and
particular solution

y(t) =¥ + ¥n
\ o —1/T
y(t) = KA + (yg— KA)e™
N — S—— ~ — —
Time response Steady response Transient response

Y =0 = (KA—yo)(1—e"/7)
Subtract y,, form both sides to get

Error fraction function Here

I'(1) = _\‘(1!') oo e T Yoo = KA



(KA—yo)(1 — e /%)

Y — Yo —

Output of first order system exposed to
step input KA with initial y=y,

Voo = KA

e ! =0.368

28



Solution for first order system exposed to step input

Error Fraction function I'(1) =— — =

1.0

0.8

0.6

Error fraction, I




Shape of the error fraction plotted on semilog coordinates

1.000

0.368

| II]IIII

0.100

Error fraction, I

0.010

I I I
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t/T

Figure 3.8 The error fraction plotted on
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semilog coordinates.



Experimentally finding the time constant for a first
order system

* Plotting on semilog plot the variation in
gamma I (error function) vs time to get
accurate value of the time constant t

e Use curvefit to find the best equation fit

* From the figure estimate the slope of the
curve which is related to the time constant

Yo— Ve log(T) = —t/t
Y =mt

See Example 3.5 in your textbook
m=-1/t1



Example 35
A particular thermometer is subjected o a step change, such as in Example 3.3, in an experimental
exercise 10 determine its ime constant. The temperatume data are recorded with time and presented

in Figure 3. 10, Determine the time constant for this thermome ler. In the experiment, the heal transfer
coefficient, f, is estimated o be & W/m™-C from engineering handbook correlations.

ENOWN Data of Figure 3.10

h=6W/m-C
ASSUMPTIONS Finst-onder behavior using the model of Example 3.3, constanl properties
FIND T

SOLLTION  According 10 Equation 3.7, the time constant should be the negative reciprocal of
the slope of a line drawn through the data of Figure 3.10. Aside from the first few data points, the
data appear to follow a linear trend, indicating a nearly first-order be havior and validating our model
assumption. The data is fit to the first-order equation®

23logl = (0.1 )¢ + 0.00064

[(1) ===/

-E . I = -0.194¢ + 0.00064 Slope = m = —0194 = —1/1’
s F
N T=05.15s
0.01 ' ' ' . .
a 5 10 15 zo  Figare 3.10 Temperature—time history

Time, & (=} of Example 3.5.

* The least souares, appmoach i curve liting 15 discussed m de ] in Chapler 4. 32



8b-frequency response for first order system
Assume the input function to be
F(t) = A sin(wt)

The first or@er dlfferen.tlal equation of Output
the measuring systemis e

dy signal
/\/—> TE+y=KF(t) —

First order measurement system

TV + v = KA sin w!

The solution of the differential equation

1

v(1) = Ce™ /7

wT)

#

KA . _
+ Sin (m! — tan
\/1 + (o71)°

Which consists of a decayed part plus a sinusoidal part

After certain time the decayed part will disappear and

the left is the sinusoidal part
33



8b-frequency response for first order system

The solution of the differential equation

KA
Bw) = J1+(w1)2
B 1
Magnitude M(w) =

KA~ J1+ (wr)?
Phase shift d(w) = — tan_l(w‘[)

@ s the phase shift



Shape of the input and output signals on
first order measuring system

Time delay

Signal

p1 =

®
w

Figure 3.11 Relationship
between a smusoidal input and

2 output: amphitude, frequency,
and tume delay.

Output signal
P . Input Signal

35



8b-frequency response for first order system

Define the function M(w) which is the
magnitude ratio

B 1
M) = KA J1+ (wr)?

Whenow >0 M(w)—>1

Magnitude ratio
M(w)

When® > M(w)—> 0

When ® - 1/t M(w)— 0.707 or -3dB

Dynamic error=0

S(w) =Mw) -1

1.2

1.1
1.0

Magnitude

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

I
|
]
o

Decibels

dB =20log M(w)

11111 1 1 1
10.00

100.00

36

Decibels (dB)



8b-frequency response for first order system

Phase shift

Phase shift 0
10
20
® = —tan" Y (w1) = 30
2 40 —
Z 50l
Wheno >0 ®(0)—0 § 60 |-
-70 |—
When® > dD(w)—>- 90 80 |
-90
Wheno — 1/t ®P(w)— -45

| 11 111
0.01

Figure 3.13 First-order system

frequency response: phase shift.

1 L1 111
0.1

11 | 11 11
1.0

TwW

L1l 1
10.0

100.0

37



Definition of bandwidth
dB = 20logM(w)

amplitude ratio (A4,
A

1.000 e e e ———— — — — — — — — — — — —

/A, )

0.707
(-3 dB)

bandwidth

e n

e |- Y

P

[
L=
]

H frequency

Frequency bandwidth= the frequency band over which
M(w) <= 0.707. In terms of decibels, the band
frequencies within which M(®) remains above -3dB

38



9-2"d grder system

. . d? d
a->vV+ ayy + agy = F(1) md—t); + Cd_}t, + ky = F(t)
Input signal ] | Output Signal
| o — Y + a1y + agy = F(t) >
sV +—y+y=KF(1)
Wy Wy Second order measurement

system
Examples of 2"

a[] . .
w, = , /— = natural frequency of the system  order systems:
)
y * Accelerometer
1

(= = damping ratio of the system ¢ Pressure
24 fApd> =
transducer

Damping 1 \/E ¢ ¢
C. = [ﬂﬂ = —_ f—
coefficient (2vkm) m 2V km

39



9-2"d order system

1 2
—?\ +—A+1=0
UJ" Wy

The roots of the characteristic function (for the
homogeneous equation)

."—

}\.2: gmnimn\fg — 1

Roots can be either

1-Real & un -equal two roots
2-Two equal roots
3-Complex roots



9-2"d order system
Homogenous solution

Depending on the value for { three forms of homogeneous solution are possible:

0 < { < 1 (underdamped system solution)

yu(t) = Ce™*'sin (mﬂ 1=+ {;1)

{ =1 (critically damped system solution)
Fﬁa“} —_ CJE‘R'! + CEIE‘R”

{ > 1 (overdamped system solution)

}-‘ﬁ(f} = le':‘h'; + Cgi‘:’hz;

41



9a-Rsponse of 2" order system due
to step input

Output signal

— A2Y + a1V + agy = F(t) —

Second order measurement
system

Step input

42



Response due to step input function

. _ C . o) o)
v(1) = KA — KAe™ " { SIn (mnm 1 — i;') + cos(wﬁ!\f 1 — i;')
V1-=0

0<{<1 (3.15a)

V(1) = KA — KA(1 + w,t)e™" (=1 (3.15b)
v(1) = KA — KA C; “éf_11@(—‘?+V€2‘1)“ﬂ’+c2 Cf_lle(‘@‘ '?2‘1)“‘"’] {>1 (3.15¢)

the initial conditions, y(0) =y(0) =0 for convenience.

43



yin

Response due to step input function

¢=0
Undamped

Overdamped
{>1

0.5 l 1.5

2
12
n
=
bl
LN

44



Response due to step input function

A (=0

Output signal y(¢)

Figure 3.14 Second-order system time response to a step function mput.



Some definitions (underdamped system)

. 3
Period
T 2t 1 .
d = ——= — d
wg fa 0.0138
N I A Steady response
Ringing 2 |
frequency 1.2 |

= I
~ I I Damped
_ 72 = oscillations
Wg = Wy 1=¢7 5 | |
2 I I
= I I
- | |
o 1 Settling I
= time —=
(£10%) |
] I
90% | I
Rise | I
time : :
| 0.009
0 | N | | | |
0.00 0.0038 0.01 0.02 0.03 0.04 0.05
Time, t (s)

where w, 1s called the ringing frequency.



Response due to step input function

0 2 4 6 8 10

w1
From Holman textbook

47



Response of 2"d order system due to
sinusoidal input function

Output signal

SSSSSSSS

; : ??7?
/\/—> 2y + a1y + agy = F(t) fed>

Second order measurement
Sinusoidal system
input

48



9b-frequency response

.‘*1(3‘) =Yy T

)

KAsin|ot + @ (w)]
) 12
{ {1 — (m/mn)gl + [QCm/mn]'}

Vsteady (1) = Y(t — 00) = B(w)sin[o? + ®(w)]

Or the magnitude will be

{ {1 - (m/(‘)n)z} + [2§0)/0):J2}

1/2

49



9b-frequency response

Magnitude
B B(w) B |
M) =Fx = o N
{ {1 — (/) } + RLlw/w, }
Phase shift

1 22;(0/(03?
b(w) = tan
e ( 1<m/mn>2)

50



9b-frequency response

S
. 46
2.0 Magnltude * Resonance
band
15—
— 43 <L
— 0 | Transmission
band
€ - 3 <
- z
E - 6 3
g | o2
= a
g = 19 | Filter
band
—{ -15
l -
Resonance
Figure 3.16 Second-order system frequency response: magnitude ratio. Frequency
— 2
wg = wpy/ (1= 2¢2) / 5
- { L
Wr = Wy\/ I — 2

Resonance frequency. Peak value

51



Phase shift [°] & (w)

9b-frequency response

10.0

oo Phase shift

10.0
5.0

2.0

1.0
0.7

0.5
0.4

{=0.3

2.0




lllustrative examples

1-first order system with step input
2-first order system with periodic input
3-2"d order system with step input
4-2" order system with periodic input



lllustrative examples

1-first order system with step input

A first order system for measuring temperature has a time constant
of 5 s. The initial temperature is 25 ° C. The temperature is
suddenly changed to 60 ° C.

a-Calculate the time when the temperature reaches 50° C.

b-What is the rise time to achieve 90% of the final value

We have the relation y(1) = Yoo —t/T

Error Fraction function I'(7) =: =
X0 Y
y(0) =y,=25, s0-60 e r
y(0)=Y4=60, y(t)=50, 2560 ° S =e
T=5S t
In (;) _ _é -125=-¢c % t=6.265

Same thing for part b to get t=8.82 s



lllustrative examples

2-first order system with periodic input

Consider a first order system with time constant t=1s. Find the magnitude ratio and
phase shift for the following input frequencies

f (hz)) 001 |005 |01 | 05 |1 5 10 20
] _ B _ 1 4
Magnitude M(w) = A NEROE Phase shift ® = — tan"Y(w7)
w = 2nf
f (Hz) 0.01 0.05 0.1 0.5 1.0 10
o (rad/s) 0.06| 0.31] 0.63] 6.28 12.57/ 31.42| 62.83
®T 0.06/ 0.31] 0.63] 6.28 12.57| 31.42| 62.83
M() 0.998/0.954| 0.847, 0.157| 0.079] 0.032] 0.016
O (deg) -3.6/ -17.4| -32.1] -81.0f -85.5| -88.2] -89.1

55



Magnitude ratio

M(w)

8b-frequency response for first order system

1.2
1.1
1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Magnitude

Decibels (dB)

Phase shift, d(w)(°]

50 |-

Phase shift

56

100.0



lllustrative examples

3-2"d order system with step input

Consider a second order system with mass of 2 kg and a spring constant of k=100

N/m. How long it will take to achieve 90% of the unit step function for damping
ratio of 0.1, 1.0, and 1.5

Natural frequency [Rad] o, = J% _707rad/s Damping ratio= &

. _ ( 5 5 .

y(1) = KA — KAe ! {%m (m,iz 1 — C“) + cos(mnz 1 — C“) 0<{<1 (3.15a)
(/10 Ji-e

y(1) = KA — KA(1 + wp,t)e™" {=1 (3.15b)

y(1) = KA — KA |*F “’f _ W+c2— "f —(VE )] (=1 (3.150)

57



(R

y(t) l

I 1 T T I

KA

0

(R

W,

0.1

1.5

o, t

0.8

6.8

T [s]

0.11

0.57

0.96

10
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lllustrative examples

4-2" order system with periodic input

For a second order system with damping ratio of 0.3 and natural
frequency of 10000 Hz. Determine the range of frequencies for
which the dynamic error less than 10%.

¢ = 0.3, w, = 10000 Hz = 62831 rad/s

The Magnitude ratio is given by
B(w) 1

KA

e ) { {1 — (w/ wn)z} g 2{w/ wnf}l/z

Or one can use the figure



— +6
2.0 Resonance
band
.15
Dynamic | a3
error 1.0 — u Transmission
band
E 0.8 — =3 ~
= —
o 0.6 e
& - 6 =
[k} 18]
3 04 | g £
[#71]
E — -10 | Filter
band
0.2
— =15
0.1 ' -
0.056

Figure 3.16 Sccond-order system frequency response: magnitude ratio.
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From Magnitude ratio figure with dynamic ratio 6=10%

w
— = 0.35
Wn

w, = 10000 * 2 * T = 62831

Then

rad
w=035*xw, = ZZOOOT = 3501 Hz

The magnitude ratio will be within 10% of
the input value as long as f < 3501 Hz






