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Daily use of measurements & control

1-Length [in making drawings, in reporting the area
of a land]
2-Weight [Human being, food, materials, etc]
3-Temperature [iIndoor and outdoor, human]
4-Humidity

5-Blood pressure

6-Tire pressure

7-Petrol (gasoline) for a car in liters

8-Car speed




Daily use of measurements & control

1-Room temperature control (or a thermostat) . The
controller receives a signal from the temperature sensor
and compare it with the set point temperature and acts

accordingly.
2-Cruise control in a car [to maintain a fixed car speed]

In-order to measure we need a sensor. This
sensor will measure the physical variable
and produce an output



Human senses

1-Touch (Rough & smooth)
2-Sound

3-Color

4-Smell

S-Taste
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Stages for measuring a physical variable
(measurement system)

1-Sensor-Transducer stage
2-Signal conditioning stage
3-Output stage
4-Feedback stage



Stages for measuring a physical variable
(measurement system)

Calibration

[ ———— e — — s — — — — — —— — —

Signal conditioning stage

Sensor stage jbm— Transducer

stage

Output
stage

Control signal

Control
stage

Figure 1.1 Components of a general measurement system.
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Stages for measuring a physical variable
(measurement system)

Output stage
%/ Display scale

Bulb

Sensor — transducer stage . .
Figure 1.2 Components of bulb thermometer
equivalent to sensor, transducer, and output
Sensor stages.



Stages for measuring a physical variable
1- Sensor transducer stage: sense the variable

Sensor: Is a physical element that uses natural
phenomenon to sense the variable

Thermometer Example: Thermal expansion of mercury
In a typical thermometer. The bulb is the sensor

Transducer: converts the sensed information into a
detectable signal form which might be electrical, mechanical,
optical, etc

Thermometer example: Transform the thermal
expansion into mechanical displacement in the tube

Some times the word transducer is used to mean both
the sensor and the transducer and even signal
. conditioning



Stages for measuring a physical variable

2-Signal conditioning stage

Optional stage. Basically to modify the signal
-Increase the magnitude of the signal (amplification)
-Removing some portion of the signal (Filtering)

-Providing linkage between the transducer and out put
stage: for example converting a translational
displacement of a sensor into rotational of a pointer

The diameter of the thermometer capillary relative to
the bulb volume determine how far up the stem the
liguid moves with increasing temperature.
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Stages for measuring a physical variable

3-Output stage

Produce an indication of the value measured.
Examples: Dials, recorders, computer disk

4-Feedback control stage

A controller that interpret the measured signal
and make a decision. The decision results in
changing the sensed variable. The controller
usually compare the difference between the set-
point and the measured value.

A house hold Thermostat: is a simple
measurement system with controller
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Experimental Test plan

Example:

How you plan for measuring the fuel consumption of
your car?

Measure fuel consumed and distance travel, then get mileage i.e.
(miles per liter)

What variables to be measured?

May be to consider also Distance travel, Road
condition, weather condition, driver, etc

How the data will be used?



Steps for measurement test plan

1-Parameter design plan
Test objectives and identification of variables:

Questions: What is the objective of the measurement?, What
guestion am | trying to answer?, What has to be measures?, What
variables will affect my results

2-System and tolerance design plan

Selection of measurement technique, equipment, and test
procedure based on some pre-conceived tolerance error.

Questions: How will | do the measurement and how good do the
results have to be?

3-Data reduction design plan
Plan a head on how to analyze, present and use the anticipated data.

Questions: How will I interpret the resulting data? How will | use the
v data to answer my question?
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Identifying variables

Independent

—]p
Variables
== Dependent

Independent variables: Two variable are independent if
changing one has no effect on the other.

Dependent variable: changing one variable changes the other

y=f(Xy1, X3, X3)
X1, X5, X5 @re independent variables
y is the dependent variable

control variable: can be held constant or at prescribed
condition during the measurements



ldentifying variables

discrete, such as the outcome of

_ throwing a die, or an operator on a
variables machine

—

continuous, such as temperature or
pressure readout [The value can be
for example for T to be between 20
and 30 °C]

extraneous variables: variables that not or can not be
controlled during measurement, but affect the measured variable

extraneous variables could cause noise or drift (interference)

Example: measuring the boiling point of water in three days.
Pressure (extraneous variable) is not kept constant (no control)

Yo



Effect of extraneous variables

Boiling Point Results
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FiguIrIe 1.3 Results of a boiling point test for water.



VY

Parameters

parameter= a functional relation between
variables such as ¢,=Q/nd*

Can be found from similarity and dimensional
analysis.

control parameter: It has an effect on the
behavior of the measured variable.

A parameter is completely controlled if it can be
kept constant during the measurement.



Noise and interference

Extraneous variables: variables that are not or can not be
controlled. They may cause noise and/or interference on the
measured variable

NOIiSe: Random variation of the measured signal
due to the variation of extraneous variable.

Examples: Incomplete control of the variables. Normal
random variation in environmental condition. Thermal
noise (Johnson noise)

Interference: undesirable deterministic trend on
the measured variable.

Examples: Sinusoidal wave superimposed onto a
measured signal path. Local AC power line, Fluorescent
VA lights, Electromagnetic interference (EMI)



Noise and interference

6
Signal: y(¢) = 2 + sin (2nt)
5 I
5 Signal + interference

Signal + noise

Signal y(t)
w

0 | | | | |
0.0 0.5 1.0 1:5 2.0

Time [s]

. )4 = : : : ; ;
Figure 1.4 Effects of noise and interference superimposed on the signal y(f) = 2 + sin 2nt.



Random tests

An important goal is to break the interference trend.
This may increase the scattering of the data but it can
be handled with statistics (Ch.4)

Randomization method are available to minimize
or eliminate interference
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Random tests

A Random test is defined by a measurement matrix
that sets a random order in the value of the
iIndependent variable applied

For example: Road type in our car mileage

example as extraneous variable can be
eliminated by experimenting the car in highways
and inside the city.
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Random test: Example

For the example of measuring the fuel
consumption for a car:

Extraneous variables:

Route, driver, road conditions, weather
conditions

Random tests: do the testing with
different driver, different road
conditions, etc...



Example 1.1
Pressure calibrator

Determine dependent, independent and extraneous variables

Extraneous
-Z variables
| 1 1 1 l’l I I \
I—l Open to N
. atmosphere * L Lo
__ i pV.T Pressure ® ® sourcee
_ ol 2 % transducer. @
/ Voltmeter
Piston i )
Cylinder/

Figure 1.5 Pressure calibration system.

gontrol parameter PV/T=const



Example 1.1 continue

Control parameter: PV/T=constant

Dependent, independent and P=P(V,T,2,,2,,Z5)
extraneous variables

z1 =noise effect due to room temperature
Z,=line voltage

Z, =connecting wires produce interference

Extraneous

% variables
1
N PV = mRT
|—| Open to
B atmosphere Power
h pV.T Pressure SQRECe
— : 2 transducer _ -
/ Voltmeter
Piston ke &
Cylinder/

Y¢
Figure 1.5 Pressure calibration system.



Example 1.2

Required: Randomize tests in example 1.1

Open to

Extraneous
variables

atmosphere

Piston

/

Figure 1.5 Pressure calibration system.
Yo

Cylinder

® Power

Pressure
transducer .

® Source

o
Voltmeter
®




¥

Example 1.2

since the extraneous variables are continuous,
then shuffling the volume value (the independent
variable) will randomize the test. Say do the
testing with the following order for changing the
volume V: V,, V¢, V,, V,, Vg, Vg
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Example 1.3 & 1.4

Random tests for discrete extraneous variables



Example 1.3

The strength of the mixture is function of binder-gel ratio
and the operator. c=f(binder, operator)

Required: test matrix to randomize the effect of the
operator

Choose three different operators z,, z,, z;. Each
block with one operator

Block

1 Z, A B C
2 Z, A B C
3 Z4 A B C

YA A, B, and C are different binder-gel ratio
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Example 1.4

The strength of the mixture in example 1.3 Is
function of binder-gel ratio, temperature, and

operator o=f(binder, operator, T)

Required: suggest a random matrix testing

See the text book



Repetition & Replication
Repetition

Repeated measurements during Single test run or a
single batch. Operating conditions are held constant

Example: repeated measurements in factory of bearing
diameter in a single batch

Repetition allows quantifying the variation of the measured variable
l.e. finding the average and variance.

Replication

An independent duplication of the set of measurements using
similar conditions,

Example: bearing diameter from day to day taking into account
the operator, and may be the machine

Replication permits the assessment of how well we can
duplicate a set of conditions
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Example 1.5

Repetition and replication for room temperature

Repetition

Make measurements for room temperature to see how the
temperature is maintained in the room [get average value, and
the variation of T in the room]

Replication

Change the set-point temperature, bring it back to the same as
the original value and then measure the room temperature (i.e.
make another repetition i.e. duplicate). The two sets data are
replication of each other



Concomitant methods

Obtain an estimate of the variable based on
different methods as check and to make
comparison

Example : Finding the volume of a cylinder

1-measure length and diameter, then find V

2-measure the weight and using the specific
weight (i.e. density), calculate the volume

m

P=7

Y
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Calibration

Calibration is the process of applying a known input
value to measurement system for the purpose of
observing the output value. The known value used for

calibration is called the standard

Static (Time independent)

Calibration
Dynamic [Time dependent]



Calibration

Static calibration: the input values are kept constant

10
® Measured values
—  Curve fit, y = f(x) ®
8 S
& . :
Calibration
o y=f® curve
5 e
= ®
o
[E
§ 4
3 |
| 1
I
I
2 I
I
|
I
I
0 l l

v Input value, x [units]

Figure 1.6 Representative static calibration curve.
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Calibration

Dynamic Calibration

Input and output are time dependent.

Known input signals: step input, ramp input,
sinusoidal signal

Example: variation of hot sphere temperature when
exposed to sudden temperature drop



Calibration

Some Definitions

Static sensitivity K

d
K(Xl) — d_y

Input range or input span

=X

| max'X

min
Output range or output span

ro:ymax'ymin

" Full scale operating range =FSO-=r
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Calibration

Another form of the calibration curve

The difference of deviation between true
or expected value y "and indicated value

y(i.e.y -y)vs.y



Difference, ¥' —y [wV]

-10

—40

Calibration

YA

Curve fit

Replication

o ]

s e

o m3

| | I I I
0.05 0.1 0.15 0.20 0.25

y, measured output [mV]

0.30

Figure 1.7 Calibration curve
in the form of a deviation
plot for a temperature sensor.
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Error & Accuracy

Absolute error

c=measured value-true value

Relative Accuracy

4

A= *100

true value



Random error & Systematic error

Random error or Precision error

When the measure value does not change over
repeated same input. The measurement system is
precise if it can produce the same output value for the
same independent input. To know If a measurement

system precise or not no need for calibration

Systematic error or Bias error or

If the indicated value is different than the true value.
The measured value is said to contain systematic
(bias) error. Systematic error is the difference between
the average value and the true value



Random error & Systematic error

(a) High repeatability gives (b) High accuracy means low (b) Systematic and random errors
low random error but no random and systematic errors lead to poor accuracy
direct indication of accuracy

Figure 1.8 Throws of a dart: illustration of random and systematic errors and accuracy.

Low random error.
High Systematic
error

Low random error. High random error.
Low systematic High Systematic
error error

¢)



Random error & Systematic error

. Apparent measured average
°

r~ ® a e
_-0-‘2 — i ——— — ———— — — ———— Scatter due
§ — @ » * © to random error
3 Test systematic error
S l
® [ \
§ True or known value
s |

N ® Measured data

I [ A I I = Figure 1.9 Effects of random

||
1 2 3 4 5 6 7 8 9 10 and systematic errors on
Measured reading number calibration readings.

&y
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Random error & Systematic error

High accuracy must imply both
low systematic and random
errors
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Errors & uncertainty

» The magnitude of the error in any
measurement can only be estimated

»Uncertainty is an estimation of the errors in
the measured value

»Uncertainty results from errors that are
present in the measurement system,
calibration, and measurement technique, and
IS manifested by measurement system
systematic and random errors
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Definitions

Resolution

The smallest increment of the measured value
that can be monitored

Sequential test
Applying sequential variation of the input either

upscale or down scale
Hysteresis error, e,

Error due to the difference when doing the test in upscale
sequential test and down scale sequential test.

€ = yupscale ~ Y downscale

Oe, = h*100
§

0

h,max

Random test
Random variation of the input to reduce hysteresis errors
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Definitions

Actual data trend
@ a el
= =
S s
5 5
[=% (=%
=] s
o o Best linear curve fit
Input value Input valua
(@) Hysteresis emor (b) Linearity emor
Maximum for
typical device /,
2 ,N e Typical shift ~_~
@ Z > Nominal curve @ (high), ~ s
3 /. /7 fortypical device E < )/ ~
/7
2 / Ho s #27,7" " Nominal
= Wi Minimum for s 7
< /4 ical devi 2 P
P ’AK typical device ,/ 7 Typical shift
v 7 (low)
Zz
Input value Input value
(e) Sensitivity error (d) Zero shift (null) error
7’
7/
7/
- // /
=
/
2 VAV
2 7/ /
2 2 /5 Probable (+2S,)
7 /7 % data scatter band on
4 4 successive measurements
ya
Input value

(e) Repaatability emor

Common
Instrument Errors

Hysteresis error
Linearity error
Sensitivity error
Zero shift error
Repeatability
error

Figure 1.10 Examples of some common elements of instrument error. (a) Hysteresis error.

(b) Linearity error. (c¢) Sensitivity error. (d) Zero shift (null) error. (¢) Repeatability error.
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Definitions

Linearity error e,

For linear relationship between the input and the output

YL = aO + alx The linear error e, =Y—-VY,

e
%e, ., =—"2*100
I

0]

Sensitivity error, e,

Is the statistical measure of the random estimate of the
slope of calibration curve

Zero error, e,

Occurs when the zero intercept is not fixed, but the
sensitivity is constant
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Definitions

Instrument repeatability

The ability of the instrument to indicate the same
value upon repeated but independent application of
the same input. Base on replication tests on the

lab. Statistically measured.

If S, Is the standard of deviation, then

06 ey =~ *100

R max
0

Reproducibility

Closeness of the agreement obtain from duplicate tests carried out
under changed conditions of the measurements. Test performed

In different labs.
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Definitions

Instrument precision

Some manufacturers use this term to mean random error

Overall instrument error
_[ 2 2 2 2]“2
UC = el +62 -I-e3 ....+em

U, Is called instrument uncertainty



Definitions
Table 1.1 Manufacturer’s Specifications: Typical

Pressure Transducer

Operation

Input range 0-1000 cm H,O
Excitation 15 Vdc

Output range 0-5V

Performance

Linearity error +0.5% FSO

Hysteresis error Less than ==0.15% FSO
Sensitivity error 10.25% of reading
Thermal sensitivity error 1+0.02% /°C of reading
Thermal zero drift +0.02% /°C FSO

Temperature range 0-50 °C




Standards units

Calibration must be done against standard
Basic Sl units

Parameter Sl unit
Length m

Mass kg

Time S
Amount of mole
substance

Temperature K
Current Ampere
Luminous intensity | Candela




Standards units

International agreement to use Sl units

Example of basic primary Sl units

1 kg

The mass of particular platinum-iridium cylindrical bar that is maintained at
specific condition, in France

A new definition of kg was approved Nov. 2018 based on Planck’s constant
using Kibble force balance

1 second

Time elapsed during 9,192,631,770 periods of the radiation emitted
between excitation levels of the fundamental state of cesium 123

Other basic Sl units are also defined such as K for temperature, m (
for length), and Ampere (for current)
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Primary and derived units

Table 1.2 Dimensions and Units”

Dimension
Unit SI IP
Primary
Length meter (m) inch (in)
Mass kilogram (kg) pound-mass (1by,)
Time second (s) second (s)
Temperature kelvin (K) rankine (°R)
Current ampere (A) ampere (A)
Substance mole (mol) mole (mol)
Light intensity candela (cd) candela (cd)
Derived
Force newton (N) pound-force (Ib)
Voltage volt (V) volt (V)
Resistance ohm (£2) ohm (€2)
Capacitance farad (F) farad (F)
Inductance henry (H) henry (H)
Stress, Pressure pascal (Pa) pound-force/inch® (psi)
Energy joule (J) British thermal unit (BTU)
Power watt (W) foot pound-force (ft-1b)

"SI dimensions and units are the international standards. IP units are presented for
convenience.



Standard tests and codes

Very well-known societies and organization issue test standards and
codes. For example

ASME issue standards for testing gas turbine for example
ASHRAE issue standards for testing fans for example

ISO issue standards for testing window type air conditioner
And so forth for other organizations such as

NIST=National Institute of standards and testing
ARI=American Refrigeration Institute

SMACNA=Sheet Metal Air Conditioning National Association

TEMA=Tubular Exchanger Manufacturer Association (Wwww.tema.org)

The Saudi Standards, Metrology and Quality Organization (SASO)
https://saso.gov.sa

Example

Testing of window type air conditioning and determining
¢ the COP or EER (Energy efficiency ratio)


http://www.tema.org/
https://saso.gov.sa/

Hierarchy of Standards

Table 1.3 Hierarchy of Standards’

Primary Standard Maintained as Absolute Unit Standard
Transfer Standard Used to calibrate Local Standards
Local Standard Used to calibrate Working Standards
Working Standard Used to calibrate local instruments

" There may be additional intermediate standards between each hierarchy
level.

[oX°)



Hierarchy of Standards

Example: Temperature measurement
standards

Table 1.4 Example of a Temperature Standard Traceability

Standard
Level Method Error [°C]*
Primary Fixed thermodynamic points 0
Transfer Platinum resistance thermometer +0.005
Working Platinum resistance thermometer +0.05
Local Thermocouple 0.5

*Typical instrument systematic and random errors.

o1
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Data Presentation

Rectangular scale, (example y=a+bx)
Semi-log scale, example (y=aebx)

Log- log scale (example y=axP)

Learn how to use Trendline in Excel program



Data Presentation
1-Linear relation Linear paper

y =a+bx y b

= a=1Yy; — bxj
X2 —Xq

a and b can be found directly
from figure.

X
2- Exponential relation

y _ aebx og Semi-log paper
log(y) = log(a) + bx log(e) *° /
Y = A+Db*cx y/ b= log(y,) — log(y1)
In(y) = In(a) + bx : st 7l
y X

) In(y,) — In(y1)
oA xz _ x]_



Data Presentation
Log-log paper

. Log
3-Power relation scale
b
b y a

Log

X scale
x=1

log(y) = log(a) + b log(x)
Y = A+bX

At x=1, one can get the intercept A,
but since the scale is logarithmic,

then it is the value a
o9

b — log(y,) —log(y1)
log(x,) — log(xy)

a can be found directly from
the figure.




Significant figures or digits

The number of digits that are relevant and
meaningful

For engineering Applications use of 3 significant
figures, such as 12.3 or 123. 0.0123

In order to determine the number of significant

digits, write the number in exponent format and
follow the significant digit rules
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Significant figures or digits

Rules for significant figures

1-Non zero digits are always significant [Ex. 29.7
— 3SF]

2-Any zeros between significant digits are
significant [Ex. 400.3 — 4SF]

3-Afinal zero or trailing zeros of a decimal portion
are significant [Ex. 4.0000 — 5SF]

4-Integer number are with infinite significant
figures [Ex. 3 — infinite SF]

5-Leading zeros are not counted.

[Ex. 0.0056 — 5.6*10° — 2SF]



Significant digits

Number |Exponential |Significant |Remarks
form digits

12.3 1.23*101 3 No zeros, all digits are
significant

123,000. |1.23000*10> |6 Zeros in the middle are counted

0.00123 |[1.23*10°3 3 Leading zeros are not counted

40,300. 4.0300*104 5 Zeros in the middle are counted

0.005600 |5.600*103 4 Trailing zeros are counted

0.0056 5.6*103 2 Leading zeros not counted

0.006 6.¥103 1 Leading zeros not counted

123 1.23*103 infinite integer

123,000 |1.23*10° 3 Large number (number in

thousands). No decimal point

1y
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Significant digits

When multiplying two number having different significant
figures, the resulted number must be written with the

smallest number of significant figures of either of the two
numbers

For engineering calculations keep 3 significant figures
Example A=2.3601, B=0.34

A=2.3601*10 [5 SF], B=3.4*10"1 [2 SF]

AB=2.3601*0.34=0.802434
AB=0.80 [2 SF]



Significant digits

Adding and subtracting rule for significant figures

¢

1-Align the numbers so that the decimal point be on the
top of each other

2-Find the number that has the least number of places
after the decimal point

3-Round your results to the last number of places found
In 2

1728

Q)

Example 3.4
14.91

Add 3.461728 and 14.91

17.37
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Rounding the resulted numbers

1-If the digits to be discarded begin with a digit less then 5, the
preceding number is not changed.

T

Digit to be discarded
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Rounding the resulted numbers

= 2-If the digits to be discarded begins with a 5 and at least one
of the following digits is greater than 0, the digit preceding the

Sisincreased by 1

1 2 6 5 3
Digit to be The following
discarded digit is not
zero




Rounding the resulted numbers

3-If the digits to be discarded begin with a 5 and all the following digits
are 0O, the digit preceding the 5 is unchanged if it is an even number and
increased by 1 if it is an odd number

2 2 5 0 0 2 5 0) 0
Even Digit to be Digit to be
number discarded number discarded

1y



Rounding the resulted numbers

= 4-The number of significant digits is an exact count is not
considered when establishing the number of significant
figure digit to be reported

» 5-Round your final result but do not round the intermediate
calculations

Example 1.12

A handheld appliance consumes 1.41 kW of power. So two identical units (exact count N = 2)

consume 1.41 kW x 2 = 2.82 kW of power. The exact count does not affect the significant digits in
the result.

TA



Rounding the resulted numbers

Example 1.11

Round the following numbers to three significant digits and then write them in scientific notation.

49.0749 becomes 49.1 or 4.91 x 10"
0.0031351 becomes 0.00314 or 3.14 x 1073
0.0031250 becomes 0.00312 or 3.12 % 10~3

14



Youtube channel

Sample of students’ project

https://www.youtube.com/channel/lUCINDEzQAXIGqIKhfOSPV|4A



RICHARD S. FIGLIDLA DONALD E. BEASLEY

MECHANICAL
MEASUREMENTS

Sixth Edition




RICHARD S. FIGLIOLA DONALD E. BEASLEY

SEVENTH EDITION
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New definition of kg based on Planck constant
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A Kibble balance (previously, watt balance)
IS an electromechanical measuring
Instrument that measures the weight of a
test object very precisely by the strength of
the electric current and voltage needed to
produce a compensating force.



https://en.wikipedia.org/wiki/Measuring_instrument
https://en.wikipedia.org/wiki/Weight
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Voltage
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English term or word

sensor e
transducer PERNA
Signal conditioning B LAY s
Noise zle 3 o) (i e
Interference Jalas
calibration 3 laa
variables <l yaaiall
Dependent la e Ao adiad
independent e o adiasy
Extraneous variable Axia pia
Sequential test Judaia LAl

Random test
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English term or word

hysteresis aladl)
Uncertainty Sl da ja
Calibration curve 5 plaall iaia
Sensitivity Al
RSS root sum of squares Cnd Gl jall & ganna

ol
Input range Jaddl (524
Output range z Al s
Accuracy be) yall dnia
precision 3¢) yall 43,
Random error sl 5l Siaaall Unall
Bias or precision error Gpaia) calatiall Uadl)
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English term or word

Resolution Jaadil)
Significant figures A sixall ol8 )Y
repetition O Ss

replication (duplication)
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Precision and Accuracy

Precision is a measure of consistency or repeatability. For instance,
my bathroom scale is not properly zeroed so that it consistently
reads too low by 4.5 1o 4.6 Ibs. This scale is precise.

Accuracy is a measure of the error in a reading or measurement.
The scale in the above example is not accurate. If, on the other
hand, the scale sometimes was too high and sometimes too low it
may be considered accurate in the average... but not precise.
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Sep. 2019

Important for plotting function on
rectangular, smilog or log log scales

In log linear graph for an exponential relation such as y=a exp(bx)

You get a linear line on such semilog plot

But you can not get the slope because one can use different distances for x
and y scales

You can get the value of b as follows

you can get a value by
b=(log(y2-log(y1)/[(log(e*(x2-x1)] looking at the figure when

use In function

b= In(y2)-In(y1)/(x2-x1)

for log log scale you can find a and b from the figure provided that
the distances for in x and y log scales are the same



