King Abdulaziz University
College of Engineering
Mechanical Engineering
Thermal Engineering \& Desalination Tech. Dept.

MEP 365
Thermal Measurements
Fall 2022
HW. \# 08
Ch. 9 Pressure measurement

1-If the atmospheric pressure at one location is 95 kPa , how much this pressure is equivalent to in terms of a column of mercury ($\rho_{\mathrm{HG}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$) or in terms of a column of water ($\rho_{\mathrm{w}}=1000$ $\mathrm{kg} / \mathrm{m}^{3}$)

2-For what pressure range does the McLeod pressure gauge is used for? How much the expected uncertainty in using this gage?

3-For McLeod pressure device assume the followings are given:
-Manometer fluid used is Mercury $\rho_{\mathrm{m}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$.
-Diameter of the measuring leg is $\mathrm{d}=5 \mathrm{~mm}$
-The length of the mercury in the measuring leg is $\mathrm{y}=2 \mathrm{~cm}$
-The initial volume of the measuring leg $\mathrm{V}_{1}=2.8445 \mathrm{~cm}^{3}$
Calculate the pressure p_{1}.
If the smallest scale in reading y is 1 mm , calculate the uncertainty in measuring p_{1} as a value and a percentage?

4-Draw a simple sketch for a barometer and explain how atmospheric pressure is measured using this device.

5- A manometer is used to measure the gas pressure in a tank as shown in the figure. The gas density is $1.4 \mathrm{~kg} / \mathrm{m}^{3}$. The manometer fluid is mercury $\left(\rho_{\mathrm{m}}=13600 \mathrm{~kg} / \mathrm{m}^{3}\right)$. If the manometer reading H is 3.5 cm of mercury, what is the absolute pressure in the tank? Take $\mathrm{P}_{\mathrm{atm}}=101.3 \mathrm{kPa}$.

6- If instead of a straight U tube manometer in problem No. 5, an inclined manometer with $\theta=30^{\circ}$ is used, calculate the length L of the mercury fluid in the inclined manometer leg.

7- Draw a sketch of an inclined manometer. How this manometer is different than the U tube manometer. What is the sensitivity coefficient for the inclined manometer? Show that the static sensitivity of an inclined tube manometer is a factor of $1 / \sin (\theta)$ higher than for a straight U tube manometer, where θ is the angle of inclination measured from horizontal.

8-List the elemental errors associated with using manometers?
9-Draw a sketch of a Deadweight tester. Explain how this device is used to calibrate a Bourdon pressure gage? For what range of pressures does this device is used?

10-List all types of pressure sensors and draw a sketch of Bellow and Diaphragm types.
11-List all types of secondary pressure transducers used for a diaphragm pressure sensor and draw a sketch where strain gage transducer is used with one pressure sensor.

12-Draw a sketch of voltage divider circuit. If the input voltage is E_{i}, the output voltage is E_{o}, the total resistance is R_{t}, and the divider resistance is R_{x}, show that the output voltage E_{o} as a function of E_{i}, R_{t}, and R_{x} to be given by $E_{o}=E_{i}\left(R_{x} / R_{t}\right)$. What will be the output voltage when accounting for voltmeter loading?

13-For a voltage divider circuit shown, the output voltage is measured using a voltmeter that has an internal resistance of R_{m}. If $R_{1}=2000 \Omega, R_{2}=3000 \Omega, E_{i}=5 \mathrm{~V}$, calculate the output voltage and the loading error for internal resistance R_{m} of $\mathbf{1 1 , 0 0 0} \Omega, \mathbf{1 1 0 , 0 0 0} \Omega$, and $1100,000 \Omega$. What do you conclude?

