King Abdulaziz University
College of Engineering
Mechanical Engineering Department

MEP 365
Fall 2022
Thermal measurements
HW \# 7 (Temp. measure 2)

1-Estimate the conduction error e_{c} for a temperature sensor shown in the sketch. Information about the sensor is:
-Thermal conductivity $\mathrm{k}=40 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
-Heat transfer coefficient between the flow and the sensor is $10 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$
-Assume the sensor to be a rod of diameter 2 mm , and length $\mathrm{L}=5 \mathrm{~cm}$
-The fluid temperature $\mathrm{T}_{\infty}=70^{\circ} \mathrm{C}$.
-Take the wall temperature to be $60^{\circ} \mathrm{C}$.

2-Consider a probe with emissivity of $\varepsilon_{p}=0.8$ located in a large room as shown below. The sensor is enclosed by a radiation shield with emissivity $\varepsilon_{s}=0.5$. The air temperature $\mathrm{T}_{\infty}=24^{\circ} \mathrm{C}$, and the enclosure temperature is $50^{\circ} \mathrm{C}$. The heat transfer between the probe and air is $10 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$, Estimate the probe temperature and the radiation error once not considering the shield and once when considering the shield.

3-The temperature of a high speed flow at Mach number $\mathbf{M}=\mathbf{0 . 8}$ is to be
 measured. Assume a recovery ratio $\mathrm{r}=0.8$. What is the recovery error? Take the sound speed to be $340 \mathrm{~m} / \mathrm{s}$. If $\mathrm{T}_{\infty}=90^{\circ} \mathrm{C}$, determine T_{p}, and the stagnation temperature T_{t} ?

4- A spherical thermocouple bead has a diameter of $=1 \mathrm{~mm}$ and initial temperature of $\mathrm{T}_{\mathrm{i}}=300 \mathrm{~K}$. The thermocouple properties are $\rho=7900 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{p}}=450 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$. The thermocouple is suddenly exposed to convection environment at temperature of $\mathrm{T}_{\infty}=500 \mathrm{~K}$. The convective heat transfer is $\mathrm{h}=\mathbf{6 0} \mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ Determine the time constant of the probe, and draw the temperature variation of the thermocouple with time.

5- One proposed equation for relating the temperature and electric resistance of a thermistor is Steinhart and Hart equation which is given by

$$
\frac{1}{T}=A+B \ln (R)+C \cdot[\ln (R)]^{3}
$$

Where T in Kelvin, R in Ohm.
If the following information is given for one thermistor

case	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{R}(\mathrm{Ohm})$
1	5	25000
2	25	10000
3	45	4000

a) Calculate the constants A, B and C.
b) Using the found values of the constants, calculate the temperature if the resistance is 7000Ω

6-Consider a Wheatstone bridge in a voltage deflection mode used with RTD to measure temperature. Three of the resistances are of value 25 Ohm . One arm of the Wheatstone has an RTD. If the input voltage to the bridge is 5 V , and deflected voltage is 0.5 V , calculate the resistance of the RTD and its temperature. For this RTD take $\mathrm{T}_{0}=0^{\circ} \mathrm{C}, \mathrm{R}_{0}=25 \mathrm{Ohm}$ and $\alpha=0.0041 /{ }^{\circ} \mathrm{C}$.

7-Problem No. 8.41 in your textbook

