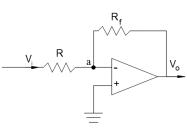
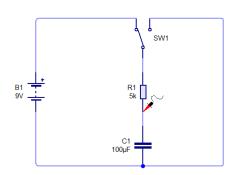

1-Use the Circuit Wizard-student edition version software to sketch the voltage divider circuit. Prepare a table for your results as shown below. For V_i =9 V, R_1 =900 Ω , and R_2 of your choice between 100 and 5000 Ω . Calculate manually the current i, V_1 and V_2 .

Case	Vi	R_1	$R_{2}\left(\Omega\right)$	i	V_1	V_2
1	9	900				
2	9	900				
3	9	900				
4	9	900				


2-Sktech the Wheatstone bridge circuit on circuit wizard. Prepare a table and find the output voltage E_{o} in each case. Select R_{3} to be between 50 and 200 Ω , and fill the table below

Case	R_1	R_2	R_3	R ₄	$E_{i}(V)$	Eo
1	120	120		120	5	
2	120	120		120	5	
3	120	120		120	5	
4	120	120		120	5	

3-Sktech a circuit for inverting OP-AM (Inverting Operational Amplifier) and complete the following table of your choices. What do you conclude?


Case	R	$R_{\rm f}$	Vi	$V_{o}(V)$
1				-5
2				-15
3				-2
4				-0.5

4- Create an RC time circuit as shown. Complete the table below of your choices

Case	V_i	\mathbf{R}_1	C_1	time constant (τ=RC)
1				0.1 s
2				1 s
3				10 s

Attach the variation of capacitor voltage with time for the case of charging and discharging the capacitor, with $\tau=17$ seconds

5-By searching the internet and using Circuit Wizard construct a simple circuit using one or two transistors. Explain how the circuit works, and where the circuit is used practically.