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Important correlations figures and tables for MEP365 Thermal Measurements 
2021 

 

Ch.1 Introduction 
 

1.1 Instrument uncertainty 

 

( )22

3

2

2

2

1 .... mc eeeeu +++=  

Where e1, e2, ….. are the errors 

 

Ch. 2 & Ch. 3 Signals & Response of a Measurement System  

A)  Signals 

Deterministic functions Non-deterministic functions 

  
 

Signal average and RMS (Root Mean Squared) 

Average                                     𝑦̅ =
∫ 𝑦(𝑡)𝑑𝑡

𝑡2 
𝑡1

∫ 𝑑𝑡
𝑡2

𝑡1

 

RMS (Root Mean Squared)     𝑦𝑟𝑚𝑠 = √
1

𝑡2−𝑡1
∫ 𝑦2𝑑𝑡

𝑡2

𝑡1
 

Sinusoidal wave 

𝑦(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑡) 

Period T [s]  & frequency f [Hz]   

𝑇 =
2𝜋

𝜔
=

1

𝑓
  

The combined sine and cosine function can be written in either sine or cosine wave: 

𝑦(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin (𝜔𝑡) 

𝑦(𝑡) = 𝐶 cos (𝜔𝑡 − 𝜙) 

𝑦(𝑡) = 𝐶 sin(𝜔𝑡 + 𝜙∗) 

where 

𝐶 = √𝐴2 + 𝐵2  and    𝜙 = tan−1 (
𝐵

𝐴
)  ,       𝜙∗ = tan−1 (

𝐴

𝐵
) ,      𝜙∗ =

𝜋

2
− 𝜙 

 

B) System response 
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General form of measuring system differential equation 

𝑎𝑛

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1 
+ ⋯ 𝑎1

𝑑𝑦

𝑑𝑡
+ 𝑎0 𝑦 = 𝐹(𝑡) 

B1- zero order system 
𝑎0𝑦 = 𝐹(𝑡) 

𝑦(𝑡) = 𝐾𝐹(𝑡) 

K=1/a0 is called static sensitivity 

 

B2-First order system 

𝑎1

𝑑𝑦

𝑑𝑡
+ 𝑎0𝑦 = 𝐹(𝑡) 

𝑎1

𝑎0

𝑑𝑦

𝑑𝑡
+ 𝑦 =

1

𝑎0
 𝐹(𝑡)    

𝜏
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝐾𝐹(𝑡) 

 is the time constant, which a fundamental characteristic of a first order system 

B2-a step response for first order system 
Input step:           𝐹(𝑡) = 𝐴𝑈(𝑡) 

𝜏𝑦̇ + 𝑦 = 𝐾𝐹(𝑡) = 𝐾𝐴𝑈(𝑡) 

U(t) is the unit step 

The solution is given by: 

 

𝑦(𝑡) = 𝐾𝐴      +       (𝑦0 − 𝐾𝐴)𝑒−𝑡 𝜏⁄   
                                  Steady       Transient part 

The error fraction function is defined as   

 

Γ(𝑡) =
𝑦(𝑡) − 𝑦∞

𝑦0 − 𝑦∞
= 𝑒−𝑡 𝜏⁄  

 

B2-b Frequency response for the first order system 

𝜏𝑦̇ + 𝑦 = 𝐾𝐴𝑠𝑖𝑛(𝜔𝑡) 

Transfer function   

𝐺(𝑠) =
1

1 + 𝜏𝑠
 

The general solution is given by:  

𝑦(𝑡) = 𝐶𝑒−𝑡 𝜏⁄ +
𝐾𝐴

√1 + (𝜔𝑡)2
 sin (𝜔𝑡 − tan−1 𝜔𝑡)   

 

 

Magnitude         𝑀(𝜔) =
𝐵

𝐾𝐴
=

1

√1+(𝜔𝜏)2
  

Time delay 1,  𝛽1 =
𝜙

𝜔
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Magnitude Phase shift 

 
 

 

B3-Second order system 
𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 = 𝐹(𝑡) 

𝑎2𝑦̈ + 𝑎1𝑦̇ + 𝑎0𝑦 = 𝐹(𝑡) 
1

𝜔𝑛
2

 𝑦̈ +
2𝜁

𝜔𝑛
𝑦̇ + 𝑦 = 𝐾𝐹(𝑡) 

 Natural frequency                           𝜔𝑛 = √
𝑎0

𝑎2
= √

𝑘

𝑚
 

 Damping ratio                                 𝜁 =
𝑐

𝑐𝑐
=

𝑎1

2√𝑎0𝑎2
=  

𝑐

2√𝑘𝑚
 

B3-a step response for a second order system 

 
 

Ringing frequency 
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Step response Rise time, settling time and Ringing 
frequency for under damped system  
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B3-b Frequency Response for the second order system due periodic input 

 

Transfer function 

𝐺(𝑗𝜔) =
1

[1 − (
𝜔

𝜔𝑛
)

2

+ (
2𝜁𝜔
𝜔𝑛

) 𝑗]
 

 

Magnitude:             𝑀(𝜔) =
𝐵(𝜔)

𝐾𝐴
=

1

{[1−(
𝜔

𝜔𝑛
)

2
]

2

+[2𝜁𝜔 𝜔𝑛⁄ ]2 }

1
2⁄
 

    

Phase shift:             𝜙(𝜔) = tan−1 (−
2𝜁𝜔/𝜔𝑛

1−(
𝜔

𝜔𝑛
)

2) 

Resonance frequency  𝜔𝑅 = 𝜔𝑛√1 − 2𝜁2  
 

 

Dynamic error  

 
 

Magnitude Phase shift 

  
 

 

  

𝛿(𝜔) = 𝑀(𝜔) −1 
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Ch. 4 Probability and Statistics 
if x’ is the true value, x is the mean value and 𝑢𝑥̅ is the uncertainty then the true value for certain 

probability is given by 

%)(      ' Puxx
x

=  

Number of intervals K to generate frequency distribution 

1)1(87.1
4.0
+−= NK    N is the number of data points. For very large value of N, use 𝐾 = 𝑁

1

2 

provided at least one interval with occurrences  5  (i.e. nj  5 ). 

 

4.1 Infinite statistics 

If the probability density function p(x) is known in the absence of the systematic errors ( xx =' ), 

then the true mean value can be found using 


+

−

= dxxxpx )('  

The variance is given by 


+

−

−= dxxpxx )()(
22  

and the standard of deviation is  

 

Normal (Gauss normal distribution function) 








 −
−=

2

)'(

2

1
exp

2

1
)(



xx
xp  

Define z1 as 






x'-x
 and  

'1

1 =
−

=
xx

z  

Probability for z to be between –z1 and z1 












=+− 

−
1

2

0

2/

11
2

1
2)(

z

dezzzP 



 

The term between the two brackets above is called half sided integral. It is tabulated in the 

following table (Table 4.3) 

 

The probability that the ith measured value will have a value in the range x’z1 is 2P(z1)*100 

=P% 

(P%)                   ' 1zxxi =   
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4.2 Finite statistics 

 

 

Sample mean, x  


=

=
N

i

ix
N

x
1

1
 

Sample variance, 
2

xs  


=

−
−

=
N

i

ix xx
N

s
1

22
)(

1

1
 

Sample standard of deviation, xs  

2

xx ss =  

Standard deviation of the mean  

N

s
s x

x =  

Sample data interval for certain probability      %)(    , Pstx xPv  

 

True mean value estimation with probability P(%)  %)(    , Pstx xPv  

 

tv,P is the t-estimator which can be found from table 4.4 below. 

v is the degree of freedom =N-1 
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Chauvenet’s criterion for outlier data 

Let z0 be 𝑧0 = |
𝑥𝑖−𝑥̅

𝑠𝑥
|  

If (1 − 2 ∗ 𝑃(𝑧0)) <
1

2𝑁
 then it can be considered outlier 

Number of measurements required 
2

195,11
















−

d

st
N

N

T   P=95% 

Additional data needed NT-N1 

d=CI/2 where 

CI is the confidence interval  
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Least squares method 
A polynomial of order m between y and x is given by: 

m

mc xaxaxaay ++++= .......
2

210
 

 

 

 

 

 

 

 

 

 

 

 

 

…….. 

…….. 

…….. 

 

 

 

 

 

 

 

Standard error of the fit: 

 

Degree of freedom: 

Uncertainty of the fit 
N

s
tu

yx

Pv ,=  

Ch. 5 Uncertainty 
 

 

Design stage uncertainty 

 22

cod uuu +=  

uo=interpolation error=(1/2) resolution 

uc=instrumental error 

 

Error Propagation 

R=R(x1,x2,x3,…..xL) 

 

 

Error Propagation using Numerical Approach 
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%)(       ' Puxx x=

2/1

1

2
)( 







= 

=

L

i

xiiR uu 

ii xxi

i
x

R

=


















=

),.....,,( 321 LxxxxRR = ),.....,,( 321 Lo xxxxRR =

),.....,,( 321 Lxii xxxuxRR +=
+

),.....,,( 321 Lxii xxxuxRR −=
−

oii RRR −=
++

 oii RRR −=
−−



ii
ii

i u
RR

R 


 =
−

=

−+

2
( )

2/1

1

2









= 

=

L

i

iR Ru 

Correlation coefficient, 

2

2

1
y

yx

s

s
r −=  

Coefficient of determination r2 
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Procedure to find the uncertainty 

for multiple measurements based on 

grouping the elemental errors into 

Bias uncertainty b, and random 

uncertainty s 

 

1-Perfom multiple measurements 

for x 

2-Identfy elemental errors ek 

3-For each ek assign (𝑏𝑥̅)𝑘 and 
(𝑠𝑥̅)𝑘 

4-For each measurement, the 

standard random uncertainty is 

given by 

N

s
s x

x =  

5-Combining the systematic and the random uncertainties into  

𝑏𝑥̅ = [(𝑏𝑥̅
2)1 + (𝑏𝑥̅

2)2 + (𝑏𝑥̅
2)3 + ⋯ (𝑏𝑥̅

2)𝑘]
1
2 

 

𝑠𝑥̅ = [(𝑠𝑥̅
2)1 + (𝑠𝑥̅

2)2 + (𝑠𝑥̅
2)3 + ⋯ . (𝑠𝑥̅

2)𝑘]
1
2 

 

6-The expanded uncertainty is evaluated using 

𝑢𝑥 = 𝑡𝑣,𝑃[(𝑏𝑥̅)2 + (𝑠𝑥̅)2]
1
2 

where the degree of freedom is found using 

 
The systematic part can be neglected in the above equation if it is very small. 

 

Propagation of uncertainty to the results using the concept of grouping the errors into 

systematic and random errors 

 

 

 

 

 

 

 

 

 

 

 

𝑢𝑅 = 𝑡𝑣,𝑃[𝑏𝑅
2 + 𝑠𝑅

2]
1
2 

(P%)             
'

RuRR =
),....,;,..,,( 213212 LxxxLxxxxR sssbbbbfu +=

 
2/1

1

2








= 

=

L
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ixiR ss   
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1

2








= 

=

L

i

ixiR bb 
xxi

i
x

R

=



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= 
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
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

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
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Ch. 8 Temperature measurements 
 

RTD 
 )(1 oo TTRR −+=   

For Platinum,  is 0.003927 C-1  

 

Thermistors 
 

 oTT

oeRR
/1/1 −

=
  

Typical values of  are between 3500 K and 4600 K. 

 

Thermocouple 
• Seebeck effect 

• Peltier effect 

• Thomson effect 

Tables for the variation of emf from standard thermocouple with 0C reference junction are given 

at the end of these sheets. Temperatures are in C and emf in mV. 

 

Conduction errors 

)cosh(

)cosh()(

mL

mxx

w

=



  where   

kA

hP
m =

2  

 

 

 

 Conduction error, 
)cosh(mL

TT
TTe w

pc





−
=−=  

 

Radiation errors 
At equilibrium: heat by convection=heat by radiation 

rc qq =  

 

 

 

=5.669*10-8 W/(m2.K4) 

 

Radiation error   

 

Newton-Raphson’s method for solving non-linear equations 

 

 

Radiation error: 

)(
44

pwpr TT
h

F
TTe −=−= 


 

 

  

)(

1

mLCoshTT

TT

w

p
=

−

−





 44
)( wppppp TTFATThA −=− 

'
,1,

f

f
TT ipip −=+

−= TTe pr
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Recovery error (High speed flows) 
 

Sound of speed in air is given by   

 

 

where 

k is the specific heat ratio Cp/Cv 

R ideal gas constant =287 J/kg.K 

T is the temperature of air in Kelvin 

 

Recovery error 

 

for wires normal to flow 

 

for wires parallel to flow 

 

Relation between probe temperature Tp and stagnation temperature Tt 

 

 

 

p

tU
C

Ur
Te

2

)1(
2

−
−=  

U is the flow speed 

Tt is stagnation temperature (total temperature), which can be found using 

 

)(
2

2

−= TTC
U

tp  

Cp must be in J/kg.K. 

 

Transient behavior of a temperature sensor 
 

Time constant  is given by  

where 

  is the volume of the sensor (or probe) 

 is the sensor (or probe) density 

Cp sensor specific heat 

h is the heat transfer between the sensor and the surrounding environment 

A is the surface area of the sensor 

For a probe initially at T=Ti, subjected to environment at T  

)( TT
dt

dT
−=   

or using =(T-Ti), and  =(T-Ti) 








=+

dt

d
  

and the solution 

)1(
/ t

e
−

 −=  

hA

C p
=




p

pU
C

rU
TTe

2

2

=−= 

T
Tp

U

07.068.0 +=r

09.086.0 +=r

p

tp
C

Ur
TT

2

)1(
2

−
−=

kRTa =
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Ch. 9 Pressure Measurements 
 

=Specific weight=g [N/m3] 

S=Specific gravity=/w [Dimensionless]. 

 

Straight U tube manometer 
HgHp mm )()(  −=−=  

m is the manometer fluid density, and  is the 

fluid density 

 

Inclined manometer  
)sin()()(sin )(  LgLp mm −=−=  

 is the inclined angle of the manometer with the 

horizontal 

 

Deadweight tester 
Gravity error for elevation z (in meter), and latitude angle  (in degrees) 

)10*510*9.2)2cos(10*637.2(
553

1

−−−
++−= ze   

Buoyancy effect 

massesaire  /2 −=  

The indicated pressure is corrected using  

)1( 21 eepp i ++=  

 

Pitot static tube 

2

2

1
xxtv Uppp =−=   or  



p
U x


=

2
 

For high speed gas 

  ( ) 1/)1/(2
/)1(
−−=

− kk
pkkU   

k is specific heat ratio (Cp/Cv) 

 

Thermal Anemometry 
n

DUCE +=
2

 

or  

KUE =1  

Doppler Anemometry 

Dis fff +=  

DfU
)2/sin(2 


=  

Loading error 

 1/)/(1

1

112 ++
=

mi

o

RRRRE

E
 

When Rm→ 

21

1

RR

R

E

E

i

o

+
=  

 

McLeod Gauge            𝑃1 =
𝛾𝑦2𝐴

𝑉1−𝑦𝐴
 

𝑓𝑜 =
𝑐 ± 𝑉𝑜

𝑐 ∓ 𝑉𝑠
𝑓𝑠  

Doppler effect 
fo observer frequency, fs source 
frequency, Vo observer speed, Vs source 
speed, c=speed of sound or light 
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Ch. 10 Flow measurements 
 

Flow rate through velocity determination 

=
A

UdAQ  

for circular pipe 

 

Obstruction meters (orifice, venturi, and nozzle) 



p
AK

p
CEAQ oooI


=


=

22
 

where 

QI is the volume flow rate assuming the flow to be 

incompressible 

Velocity approach factor 
4

1

1

−
=E , 

1/ ddo=  

C is the discharge coefficient=f(Red1,), 

 

Ko=CE= flow coefficient= f(Red1,), see Fig. 10.6 & Fig. 10.11 

the pressure drop using a manometer Hp m )(  −=  

4

2

o

o

d
A


=  

Compressibility effect 

 

 

Y= expansion factor=f(Red1,), see Fig. 10.7 

Compressibility effect is considered when 1.0/)( 121 − ppp  

For Venturi meter 

 

 

 

for cast unit    C=0.984 

for machine units C=0.995 

 

Sonic nozzle 

where 

k is the specific heat ratio 

R is the gas constant in J/kg.K 

1,T1 is the upstream density and temperature 

 

Overall pressure losses: ploss, and power for the prime mover  

where  is the prime mover efficiency 

 

Laminar flow elements 

 

Vortex shedding 

Strouhal number 
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Rotameter 
2/1

1
21




























−==

f

b

b

b

d A

gV

C
AAUQ




 where the flow area A is given by ( ) 22

4
dayDA −+=


 

a=tube taper=Change of diameter over change of vertical distance y  

Subscript b refers to the float. Subscript f refers to fluid 

Ab is the projected area of the float=
2

)4/( d . D is the inlet diameter of the meter. 
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Ch.11 Strain Measurements 
 

Axial stress strain relation (Hook’s law) 

ama E  =  

 

Poission’s ratio vp 

a

L
pv




==

strain axial

strain lateral
 

Metallic gage 

c

e

A

L
R


= ,    e=electric resistivity 

e

e

p

d
v

L

dL

R

dR




++= )21(  

)21( 1 mp Ev
L

dL

R

dR
++=  

where 1 is called piezoresistance coefficient 

  

LdL

d

E

ee

m /

/1
1


 =  

Gage factor GF is defined as 

 

a

RdR

LdL

RdR
GF



/

/

/
==  

 

Output voltage change dEo due to bridge deflection 
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/

)/(24
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Strains and stresses in plan area 
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2
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
  

For thin walled vessels (t/r) thickness/radius <10 

The relation between the pressure inside the vessel 

and the stresses is given by  

t

rP
x

 
=     

t

rP
y

2

 
=  

 

)5.01( p

m

x

x v
E

−=


  

P is the pressure inside the vessel 

r is the radius of the vessel 

t is the vessel's wall thickness 

 

yx  2=
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Four arms of Wheatstone bridge 

 

( )
3421

4



−+−=
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Bridge constant   

 

 =(Actual bridge output/Output of a single gauge on 

the bridge) 
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Rosettes 

 

A) 0, 45, 90  Rosette 

 

 

 

 

 

 

 

 

 in the first quadrant if  𝜀2 >
𝜀1+𝜀3

2
, otherwise it is in the second quadrant 

B) 0, 60, 120 Rosette 

 
 

 

 

 

 

 

 

 is in the first quadrant if  𝜀3 >  𝜀2 otherwise it is in the second quadrant 

 

Ch. 7 Data Acquisition System 
 

M

VV

2
Resolution minmax −

=  

Signal Noise ratio (SNR) 

 

)2log(20)(
M

dBSNR =  

 

Sampling rate 

Nyquist Theorem 

 

xs ff 2  

fx=signal frequency, fs=sampling frequency 

 

ε𝑚𝑎𝑥 , 𝜀𝑚𝑖𝑛 =
𝜀1 + 𝜀2 + 𝜀3

3
±

√2

3
[(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2 + (𝜀3 − 𝜀1)2]

1
2  

𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 =
𝐸𝑚(𝜀1 + 𝜀2 + 𝜀3)

3(1 − 𝜈)

±
√2 𝐸𝑚

3(1 + 𝜈)
[(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2

+ (𝜀3 − 𝜀1)2]
1
2 

𝜏𝑚𝑎𝑥 =  
√2 𝐸𝑚

3(1 + 𝜈)
[(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2 + (𝜀3 − 𝜀1)2]

1
2 

tan(2𝜑) =
√3(𝜀3 − 𝜀2)

2𝜀1 − 𝜀2 − 𝜀3
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